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Correspondence analysis
Michael J. Greenacre∗

Correspondence analysis (CA) is a method of data visualization that is applicable
to cross-tabular data such as counts, compositions, or any ratio-scale data where
relative values are of interest. All the data should be on the same scale and
the row and column margins of the table must make sense as weighting factors
because the analysis gives varying importance to the respective rows and columns
according to these margins. This method is one of a large class of methods based
on the singular value decomposition and can be considered as the equivalent
of principal component analysis for categorical and ratio-scale data or as a
pair of classical scalings of the rows and columns based on their interpoint
χ2 distances, using the margins as weights. For categorical data, this method
generalizes to multiple CA, a popular method for analyzing questionnaire data. A
linearly constrained form of CA, canonical CA, is extensively used in ecological
research where species abundance data at various sampling points are visualized
subject to being linearly related to environmental variables measured at the same
locations. When certain parameters are introduced into its definition, CA has
been shown to have limiting cases of unweighted and weighted log-ratio analysis
(the latter also known as the spectral map), as well as classical multidimensional
scaling.  2010 John Wiley & Sons, Inc. WIREs Comp Stat 2010 2 613–619 DOI: 10.1002/wics.114
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INTRODUCTION

Correspondence analysis (CA) has a long and
interesting history of being defined, rediscovered,

and redefined over many decades. Statisticians
who have contributed to its origins in the first
half of the 20th century have been H.O. Hartley
(writing under his original name of Hirschfeld), R.A.
Fisher, and Louis Guttman, among others. In the
second half of the century, this method sprung up
fairly independently in Japan, France, and Holland,
respectively, guided by Chikio Hayashi (who saw
it as a method of categorical data scaling), Jean-
Paul Benzécri (who saw it as a method of data
visualization), and Jan de Leeuw (who saw it as
integrating categorical data into classical interval-
level multivariate analysis). The method’s use for
multidimensional graphical display has proved to
be very popular in research areas where large
(and sometimes sparse) sets of categorical data
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are collected, in particular linguistics, the social
sciences, ecology, archeology, marketing research, and
genomics.

Technically, CA falls into the class of classical
multivariate statistical methods of dimension reduc-
tion based on the singular value decomposition (SVD).
To be suitable for CA, all data need to be on the same
scale: examples are tables of counts, or ratio-scale data
where all values are in dollars, say, or compositional
data (sets of proportions or percentages with con-
stant sums), or zero/one data. This method leads to a
graphical display, which we call a map because of its
spatial distance properties, where rows and columns
are depicted as points. These points represent profile
vectors, that is vectors of relative values in rows or
in columns, expressed relative to their margins, while
the margins themselves are used as weighting fac-
tors, called masses, giving varying importance to the
respective row and column points. Distances between
profile vectors are defined as χ2 distances—these are
weighted Euclidean distances based on the assumption
that variance in each row or column is approximately
proportional to the mean. Finally, the quality of dis-
play of the data matrix is measured as in principal
component analysis (PCA), in terms of a percentage
of explained variance.
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COMPUTATIONAL ASPECTS

Of the many equivalent ways to define CA, we
choose the weighted PCA definition, which is close
to Benzécri’s approach—in the process the various
concepts inherent to CA will be defined. In general,
a set of m-dimensional points is denoted by xi,
where i = 1, 2, . . . , n, with weights wi assigned to
the ith point, and with metric between the points
defined by the diagonal matrix Dq with positive
values q1, . . . , qm, on the diagonal. These points can
be projected orthogonally (in the metric Dq) onto
a best-fitting low-dimensional subspace, where fit is
measured by the weighted sum-of-squared distances
between the points xi and their projections x̂i,∑

i wi(xi − x̂i)T Dq (xi − x̂i), as follows:

1. Collect the points as the rows of the n × m
matrix X, and the weights in the n × 1 vector w
and in the diagonal of the diagonal matrix Dw.
The weights are positive and sum to 1: 1Tw = 1.

2. Center X with respect to its weighted column
averages: Y = (I − 1wT)X (it can be shown as a
side result that the optimal subspace necessarily
contains the weighted average, or centroid, of
the points, so we center the points at the centroid
from the start).

3. Perform a weighted SVD on Y by multiplying its
rows by the square roots of the weights and its
columns by the square roots of the elements of
the metric, then calculate the usual (unweighted)
SVD and transform back to the solution as
follows:

D
1/2
w YD

1/2
q = UDαVT F = D

1/2
w UDα (1)

The matrix F contains the principal coordinates
of the points, i.e., their positions with respect to
principal axes. For a map in two dimensions, for
example, the first two columns of F provide the
coordinates of the n points projected onto the planar
subspace; the quality of display would be the sum of
squares of the first two singular values relative to their
total sum of squares: (α2

1 + α2
2)/

∑
k α2

k .
CA uses the above algorithm twice, on the rows

and the columns, and both problems lead to the
same SVD problem (this is unlike PCA, which gives
different solutions for a matrix and for its transpose).
Suppose the table of data, with all values on the same
scale, is denoted by N—the primary context is a two-
way table of frequency counts in a contingency table,
which we assume is the case henceforth, for reasons
of terminology. Divide N by its grand total to get the
correspondence matrix P: P = (1/

∑
i
∑

j nij)N, and

define the row and column masses as the margins of
P: r = P1, c = PT1, also collected in the diagonals of
the diagonal matrices Dr and Dc. (Hence, we can think
of P as an observed bivariate density and r and c as the
marginal densities.) The row profiles of N (conditional
densities) are its rows divided by their marginal totals,
which are identical to the rows of P divided by their
respective margins in r: D−1

r P; similarly, the column
profiles (written as rows) are D−1

c PT. The respective
χ2 metrics in the space of the row and column profiles
are defined by the diagonal matrices D−1

c and D−1
r .

Applying the above three-step algorithm, leading
to solution (1), to the dimension reduction of the row
profiles, on the one hand, and to that of the column
profiles, on the other, leads to the same SVD problem,
namely the SVD of the following matrix:

CA solution:

D−1/2
r (P − rcT)D−1/2

c = UDαVT (2)

Principal row coordinates: F = D−1/2
r UDα (3)

Principal column coordinates: G = D−1/2
c VDα. (4)

Furthermore, if in either the row or the column
problem we wish to know the positions of the
unit vectors in the projected space, these are just
the principal coordinates without the scaling of the
dimensions by the singular values, called standard
coordinates:

Standard row coordinates: � = D−1/2
r U (5)

Standard column coordinates: � = D−1/2
c V. (6)

Once again, for an optimal low-dimensional
display, for example, two-dimensional, use the first
two columns of the selected coordinate matrices. The
joint display of rows in columns, one in principal
coordinates and the other in standard coordinates,
called an asymmetric map, is a true biplot. For
example, the combination of Eqs (3) and (6), called a
row principal map, would depict the row profiles in
their optimal positions, while the columns would be
the projections of dummy row profiles each of which
has a 1 in a particular column and 0s otherwise.
The joint display of rows and columns in principal
coordinates, called a symmetric map, is not strictly
a biplot but optimizes the display of the interpoint
distances between row profiles and those between
column profiles. The total variance in the table is
measured by the sum of squares of the matrix in
Eq. (2), which is equal to χ2/n, where χ2 is the
classical χ2 statistic for measuring deviation from the
independence hypothesis in a contingency table, and
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n is the grand total of N. This measure of variation
in the table N, called the total inertia, is decomposed
along the principal dimensions of the solution as the
sum-of-squared singular values

∑
k α2

k .

AN EXAMPLE

As a small illustrative example, consider Table 1,
which was published in El País newspaper in Spain
on May 28, 2009 [p. 35; source given as the Organi-
zation for Economic Co-operation and Development
(OECD)]. Notice that this table is already in the form
of a row profile matrix, although the published per-
centages do not always add up to exactly 100% due
to rounding errors. The symmetric CA map in two
dimensions is shown in Figure 1. The total inertia
of the table is equal to 0.1285, of which 88.0% is
explained in this two-dimensional map. The point
OECD is treated as a supplementary point; that is, the
solution is calculated on the 18 countries, and then the
OECD profile is projected onto the display afterward.
A three-dimensional view of the solution can be seen
in the accompanying multimedia file (Multimedia 1),
which shows a moving rotation of the points around
the vertical second axis—Figure 2 shows a particular
view of this three-dimensional map. The third axis
accounts for a further 8.7% of the inertia, so that the
three-dimensional display explains 96.7% and is an
almost perfect representation of the data. The third
dimension shows the distinction between sport and
cultural activities, which was not apparent in the two-
dimensional view, with Norway leaning more toward
culture and Italy more toward sport.

TABLE 1 Distribution of Leisure Time, as Percentages, in 18
Countries, Along With the Organization for Economic Co-operation and
Development (OECD) Average (A Supplementary Point) and the
18-Country Average (These Last Average Values Are Used to Weight the
Column Profiles As Well As—In Their Inverses—To Define Distances
Between the Rows)

TV/Radio Sport Friends Cultural Other

Australia 41 6 3 2 47

Belgium 36 5 8 8 42

Canada 34 8 21 2 34

Finland 37 8 7 8 40

Germany 28 7 4 15 46

Italy 28 8 6 10 48

Japan 47 6 4 0 42

South Korea 35 7 16 1 41

Mexico 48 5 10 4 33

New Zealand 25 5 24 2 45

Norway 31 8 14 15 33

Poland 41 6 6 8 38

Spain 31 12 4 12 41

Sweden 31 8 7 11 42

Turkey 40 2 34 0 25

UK 41 4 7 10 39

USA 44 5 16 2 32

OECD 36 7 11 4 40

Average 36 6 11 6 39

All figures have been rounded to the nearest percentage point.

FIGURE 1 | Symmetric two-dimensional
correspondence analysis (CA) map of Table 1.
The percentage of inertia explained is 88.0%.
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FIGURE 2 | Three-dimensional view of the correspondence analysis (CA) of the leisure data of Table 1, explaining 98.7% of the inertia (the
accompanying multimedia file, Multimedia 1, shows the display rotating around the second axis).

MULTIPLE CORRESPONDENCE
ANALYSIS

Multiple correspondence analysis (MCA) is the gener-
alization of CA to several categorical variables, most
commonly in the context of questionnaire data. Sup-
pose there are Q questions (variables) and the qth
question has Jq possible responses. The original data
from N cases are sets of Q responses. This N × Q
matrix is then converted into an N × J indicator
matrix, where the columns are zero/one dummy vari-
ables for each of the J response categories: J = ∑

q Jq.
MCA is simply the application of the CA algorithm
to this large indicator matrix. As the treatment of
the response categories is multiple nominal, it is a
simple matter to include additional categories for non-
substantive responses such as ‘don’t know’ or missing
values. The MCA solution has optimal scaling prop-
erties: the category coordinates on the first dimension
maximize the variance of the case scores, subject to
the inherent quadratic constraint, and also maximize
Cronbach’s alpha reliability measure between the
questions (as quantified by the category coordinates)

and the case scores (specifically, the average squared
correlation between the questions and the case scores
is maximized).

The display is usually an asymmetric map,
for example, the row principal map using choices
(3) and (6), where each case is represented at the
average of his or her particular set of response cat-
egories. For example, we analyzed the responses of
10,112 people from six countries—Great Britain (GB),
USA (US), Norway (NO), Japan (JA), Spain (SP),
and France (FR)—to five statements about marriage
(data from Ref 1; Figure 3). The MCA solution in
Figure 3 shows a typical result for this type of data
where the missing categories are strongly associated
and define the strongest dimension in the data. The
liberal-to-conservative attitude scale is seen on the left,
and there are bands of case points depending on their
level of missing responses. Each case has a position in
this map, but we are more interested in groups of cases
than individual cases—Figure 4 thus shows the aver-
age positions of male and female respondents in the
six countries: positions stretch from the most liberal
at bottom left (French and Norwegian females) to the
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FIGURE 3 | Multiple correspondence
analysis (MCA) of questionnaire data from six
countries. Statements are (1) married people
are generally happier, (2) bad marriage is
better than no marriage, (3) marriage is
better if people want kids, (4) couples can
live together without marriage, and
(5) couples can live together before getting
married. Question responses can be (a) agree;
(m) neither agree nor disagree; (d) disagree;
(x) don’t know/missing. Percentages of
inertia are corrected according to Greenacre,
2007, p. 149 (see Further Reading).
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most conservative at upper right (Japanese females and
males). Generally, male and female attitudes from the
same country are close together, the major exceptions
being in Norway and France where males are notice-
ably more conservative. The country-gender points
do not differ so much in the direction of the missing
responses, which shows that the strong association of
the missing categories is at an individual case level,
not at an aggregate level (at least, not on the country-
gender level; a similar analysis could be done using age
and education groupings to see whether these showed
any relationship with level of missing values).

OTHER VARIANTS OF CA

Two important variants of CA are subset correspon-
dence analysis (SCA) and canonical correspondence
analysis (CCA). Both these would be useful in the
case of the second example presented above, to
partial out the effect of the missing value categories.
In SCA,2 these categories are effectively deleted from
consideration, while maintaining the original margins
of the table (this is not the same as the supplementary
point idea, where the margins would change if the
missing values were declared supplementary). Geo-
metrically, we maintain the same center and the same
metric in the space but ignore the dimensions corre-
sponding to the missing value categories.

In CCA, the display can be constrained to be
linearly related (or linearly unrelated) to externally

defined variables. This is used extensively in ecolog-
ical research where biological variables are analyzed
with the dimensions of the solution space constrained
to be linear functions of environmental variables. In
the questionnaire example above, we could define
an external variable as the sum of the dummy vari-
ables for the five missing value categories, which is
just the count of missing values for each respondent.
Constraining by this variable forces the first dimension
to align with the missing categories (so Figure 3 would
be rotated approximately 30◦ anti-clockwise). Partial
CCA would constrain the solution to be linearly unre-
lated to this external variable, and in this way would
partial out this single dimension associated with the
missing categories.

CA AND DATA CODING

An important feature of the CA approach is the wealth
of coding schemes, which allow different data types to
be transformed so that CA is suitable as a visualization
method. Here are two examples of these.

Doubling
For ratings, rankings, and paired comparisons, each
variable engenders two recoded variables that can be
thought of as positive and negative poles. For example,
a value of 2 on a 5-point rating scale (‘negative’ 1 to
‘positive’ 5, e.g. disagree to agree) is coded as two

Volume 2, September/October 2010  2010 John Wi ley & Sons, Inc. 617
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FIGURE 4 | Average positions of male (m) and female
(f) respondents in Figure 3, for the six countries Great Britain (GB), USA
(US), Norway (NO), Japan (JA), Spain (SP), and France (FR) (notice the
considerably expanded scale compared to Figure 3).

values 1 and 3, respectively, because 2 has one scale
point on the rating scale below it and three scale
points above it. In a ranking of 10 objects (where 1
is the most preferred, say), a ranking of 3 would be
coded 10 − 3 = 7 and 3 − 1 = 2, respectively, because
there are seven objects less preferred and two more
preferred. Note that the idea is to obtain measures of
association between the respondent and the doubled
variables, hence the positive pole in this last example
has the higher value of 7 because the object is highly
ranked.

Fuzzy coding
Continuous variables can be cut up into intervals and
so converted into categorical data: for example, a
variable such as temperature can be divided into three
intervals using two cutpoints, so that a value of 2
represents a ‘medium’ temperature, eventually coded
in dummy variable form as [0 1 0]. This ‘crisp’ cod-
ing clearly loses much information, and an alternative
is ‘fuzzy’ coding, where the value is coded using so-
called membership functions: for example, a recoded
value of [0 0.692 0.308] would indicate a temperature
somewhat higher up in the medium category toward
the high category. The fuzzy-coded values also add up
to 1 and so may be used in conjunction with other
dummy-coded categorical data in a CA.

CONCLUSION

CA is a versatile method of dimension reduction and
owes its good properties to the flexibility afforded
by the weighting of the rows and columns propor-
tional to their margins, and the dual concept of using
the inverses of these margins to define interpoint χ2

distances. It has some interesting theoretical links to
other SVD-based methods, such as multidimensional
scaling and the analysis of log ratios of positive data.
It has been shown3 that the CA of the matrix k − d2

ij,
where dij are interpoint distances, converges to the
classical multidimensional scaling solution of the dis-
tances when k tends to infinity. Furthermore,4 CA
of power-transformed data nλ

ij (or pλ
ij) tends to the

analysis of row or column log ratios—log(nij/nij′) or
log(nij/ni′j)5—as the power parameter λ tends to zero.
An alternative definition of CA applied to power trans-
formation of the contingency ratios [pij/(ricj)]λ tends
in the limit to the weighted form of log-ratio analysis
known in the biomedical literature as spectral map-
ping (see Ref 6 for details and references). These results
mean that we can come arbitrarily close to classical
MDS and to different forms of log-ratio analysis using
the CA algorithm on appropriately transformed data.

An R package for performing CA and MCA
with the supplementary point and subset options is
described in Ref 7, while an R package8 for ecologists
includes CA and CCA.
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FURTHER READING
The book by Greenacre (2007) gives a practical introduction to all aspects of CA, MCA, SCA and CCA. The book by
Murtagh (2005) pays special attention to different data coding systems to apply CA to different types of data. The books by
Greenacre and Blasius (1994, 1998, 2006), were collectively written by over 100 statisticians and social scientists, with strict
refereeing and editing, and reflect the development of the theoretical and practical aspects of CA and related methods.
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as La Práctica del Análisis de Correspondencias, Fundación BBVA, Madrid; 2008.

Greenacre M, Blasius J, eds. Correspondence Analysis in the Social Sciences. London: Academic Press; 1994.

Greenacre M, Blasius J, eds. Multiple Correspondence Analysis and Related Methods. London: Chapman & Hall/CRC;
2006.

Murtagh F. Correspondence Analysis and Data Coding with R and Java. London: Chapman & Hall/CRC; 2005.

Volume 2, September/October 2010  2010 John Wi ley & Sons, Inc. 619

 19390068, 2010, 5, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
ics.114 by U

niversity O
f N

ottingham
, W

iley O
nline L

ibrary on [22/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.jstatsoft.org/v20/i03/
http://www.jstatsoft.org/v20/i03/
http://cran.r-project.org/
http://cran.r-project.org/.

