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The Geometric Interpretation of 
Correspondence Analysis 

MICHAEL GREENACRE and TREVOR HASTIE* 

Correspondence analysis is an exploratory multivariate technique that 
converts a data matrix into a particular type of graphical display in which 
the rows and columns are depicted as points. The method has a long 
and varied history and has appeared in different forms in the psycho- 
metric and ecological literature, among others. In this article we review 
the geometry of correspondence analysis and its geometric interpretation. 
We also discuss various extensions of correspondence analysis to mul- 
tivariate categorical data (multiple correspondence analysis) and a variety 
of other data types. 

KEY WORDS: Graphical display; Singular value decomposition; Prin- 
cipal components; Contingency tables. 

1. INTRODUCTION 

Correspondence analysis is an exploratory multivariate 
technique that converts a matrix of nonnegative data into 
a particular type of graphical display in which the rows 
and columns of the matrix are depicted as points. It is a 
method that, algebraically at least, has been known for 
more than 50 years, the first mathematical account being 
by Hirschfeld (1935). Since then the same algebraic and 
numerical procedure has been rediscovered in different 
contexts, notably in ecology (reciprocal averaging) and 
psychology (dual scaling). The method was rediscovered 
in France in the early 1960s and has been used extensively 
in that country as a method of graphical data analysis 
(BenzCcri 1973; Lebart, Morineau, and Tabard 1977). De- 
tailed descriptions of the evolution of the various forms 
of correspondence analysis can be found in BenzCcri (1977)’ 
Nash (1978), Nishisato (1980, sec. 1.2), Greenacre (1984, 
sec. 1.3), and Tenenhaus and Young (1985). A bibliog- 
raphy by Nishisato (1986) lists more tban 1,000 references 
in the period 1975-1986 that are directly or indirectly rel- 
evant to the topic of correspondence analysis. 

In this article we focus specifically on the geometry of 
correspondence analysis and its geometric interpretation. 
This will be seen to be a variant of principal components 
analysis, but tailored to categorical rather than continuous 
data. The most basic form of correspondence analysis is 
its application to a two-way contingency table, which we 
shall call simple correspondence analysis. The geometry of 
this leading case, discussed in Section 2, provides the basic 
rules of interpretation. All other forms of correspondence 
analysis are the application of the same algorithm to other 
types of data matrices, with a consequent adaptation of 
the interpretation. In Section 3 we treat the case of a 
multiway contingency table that is coded as a matrix of 
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of the Technical Staff, Statistics and Data Analysis, Research Depart- 
ment, AT&T Bell Laboratories, Murray Hill, NJ 07974. This article was 
inspired in part by a series of seminars on correspondence analysis, 
organized by Perci Diaconis, at Stanford University in 1984. The authors 
thank the participants of the seminars for their contributions and ac- 
knowledge the constructive suggestions of the referees and the editor of 
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indicator (or “dummy”) variables. The correspondence 
analysis of this indicator matrix is known as multiple cor- 
respondence analysis or homogeneity analysis (Gifi 1981). 
In Section 4 we show how other data types may be reex- 
pressed in order to be geometrically interpretable using 
correspondence analysis. 

2. GEOMETRY OF SIMPLE 
CORRESPONDENCE ANALYSIS 

2.1 Basic Geometry 

The correspondence analysis of a two-way contingency 
table N(Z x J )  provides a leading case of the method’s 
geometry and interpretation. We shall denote the row and 
column totals of N by n,+ ( i  = 1 Z) and r z+ ,  ( j  = 1 1 . .  

I ) ,  respectively, and the overall total simply by n.  We shall 
use the 5 x 3 contingency table of Table 1 throughout 
this section as an illustration. It is a cross-tabulation of 312 
people, all identified as readers of a particular newspaper 
in a readership survey, according to five educational groups 
and three categories of readership of the newspaper. This 
example has the advantage that its geometry is precisely 
three-dimensional so that we can visually depict the tech- 
nique’s concepts and mechanism without abstraction. 

We suppose initially that we are interested in comparing 
the rows of the table. The proportions of readership types 
in each education group are given in parentheses in Table 
1. Each of these vectors is known as a row profile, denoted 
by a, = [ n I l / n , ,  n , , /n , t ]T ,  for example, a2 = [.214 .548 
.238IT. Each row in this example can be represented by 
its profile as a point vector in three-dimensional Euclidean 
space. The fact that there is a linear dependency among 
the coordinates of the profile vectors (they each sum to 
1) means geometrically that the five points are contained 
exactly in a two-dimensional regular simplex, namely, the 
triangle with vertices at the unit points along each of the 
three coordinate axes. The points may be plotted directly 
in this triangle in what is generally known as triangular 
(or barycentric) coordinates. 

Apart from serving as the vertices of the triangle bound- 
ing the row points, the unit points may be considered as 
the most extreme, or most polarized, types of row profile 
observable. For example, the unit point el = [l 0 OlT 
represents a row profile iu which the total frequency is 
concentrated into the “casual” reading category. Ip this 
sense the jth column of the data matrix is represented by 
the vertex e, of the triangle. 

For reasons that will soon become apparent, we wish 
to define distances between profiles not by the usual Eu- 
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Table 1. Contingency Table From Readership Survey 

Category of readership 
Education 

group C l  c2 c 3  Totals 

El 5 
(.357) 

E2 18 
(.214) 

E3 19 
(.218) 

E4 12 
(.119) 

E5 3 
(.115) 

Totals 57 
( .1W 

7 
(.500) 

46 
(.548) 

29 

40 
(.396) 

7 
(.269) 

129 
(.413) 

(.333) 

2 14 

20 84 

(.143) 

(.238) 

(.448) 

(.485) 

(.615) 

39 87 

49 101 

16 26 

126 31 2 
(.404) 

NOTE: Education groups41  , some primary; E2. primary completed; E3, some secondary; 
E4. secondary completed; E5. some tertiary. Readership categories-C1. glance; C2. failly 
thorough; C3. very thorough. Row profiles are given in parentheses (i.e., row frequencies as a 
propollion of row totals). 

clidean metric but rather by the following weighted Eu- 
clidean metric, called the chi-squared metric: 

&(ai, a;#) = (ai - aic)TD;l(ai - sit) 

where D, is the diagonal matrix of elements cj = n+j/n ( j  
= 1 ... J). The vector c = [cl C J l T ,  in this case the 
proportions of all respondents in the readership categories, 
is called the average row profile. To observe chi-squared 
distances between points, we can rescale the row profiles 
as follows: ii = D;lI2ai, so chi-squared distances are trans- 
formed to ordinary Euclidean distances, since (ai - 
air)TD;l(ai - ail) = (ai - ait)T(ai - a,!). Equivalently, 
we can stretch the coordinate axes in proportion to the 
values c;I’~ so that each axis has a different scale. In our 
example this results in a stretched triangle, no longer equi- 
lateral, which bounds the cloud of points (Figs. 1 and 2). 
In this metric two vertices ej and ej‘ are at a squared dis- 
tance apart of l /cj  + l/cjf, so a vertex corresponding to 
a column with low cj is pushed away from the other ver- 
tices. The profile points are accordingly stretched out in 
the direction of this vertex. 

Figures 1 and 2 also show the position of the average 
row profile c = [.183 .413 .404IT. This vector is also called 
the row centroid because it is the weighted average of the 
row profiles: c = riair where ri = n i + / n .  Each row 
profile receives a weight proportional to the respective 
row total in the original data. The relative weights ri are 
called the row masses. 

The usual chi-squared statistic x2 that tests the null hy- 
pothesis of row-column independence can now be reex- 
pressed as follows: 

I 

(nij - ni+n+j/n)2 I J  

X”ZC 
; = I  , = I  (ni+n+jln) 

I 

= n ri(ai - c)TD;l(ai - c). (2.2) 
i =  1 

In other words, X2/n can be defined geometrically as the 
weighted average of the squared (chi-squared) distances 
of the row profiles to their centroid. The quantity X2/n 
crops up frequently in correspondence analysis and is called 
the total inertia of the data matrix. 

The null hypothesis of row-column independence, nij 
= n,+n+,/n ( i  = 1 ... I ,  j = 1 ... J), is equivalent to the 
hypothesis of homogeneity of the rows: nl,/nl+ = nZj/n2+ 

as the realization of a multinomial distribution, conditional 
on the respective row total. Under the homogeneity as- 
sumption, this distribution is common to all of the rows 
up to a rescaling by the row totals. This scaled multinomial 
distribution is completely described by a set of probabil- 
ities whose maximum likelihood estimates are the ele- 
ments c, of the row centroid. Thus a significant x2 can be 
interpreted geometrically as a significant deviation of the 
row profiles from their centroid, that is, from the homo- 
geneity hypothesis. Figures 1 and 2 show the deviations 

= ... - - q j / n 1 +  ( j  = 1 .-. J). Each row of N may be viewed 

Figure 1. A Geometric View of the Profiles of the Five Education 
Groups in the “Stretched‘ Coordinate System. Each of the three axes 
has a different scale, with the unit points at 1 1 ~ ; ’ ~  = 
2.36, 1 1 ~ : ~ ~  = 1.56, and 1 1 ~ : ‘ ~  = 1.58, respectively. The transformed 
row profiles ai (i = 1, . . . , 5) all lie in the simplex joining the unit 
points. The lines joining the row profiles to the centroid profile c show 
the deviations from the “independence” point. 
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A 
/ I\ 

\ 
L- i 

C ,  c2 

Figure 2. The Triangular Simplex of Figure 7 Laid Flat, Showing the 
Profiles in “Stretched’ Triangular Coordinates (i.e., the chi-squared 
metric). Each profile receives a weight proportional to its respective 
row total. The weighted average of the squared distances between the 
row profiles and their centroid c is equal to the total inertia ?In. where 
2 is the chi-squared statistic that tests row-column independence on 
Table 7. The best-fitting principal axis is indicated by the dashed line. 
This axis minimizes the weighted sum of squared distances from the 
points to the axis. 

of each row profile from the centroid. The x2 statistic for 
these data is 26.0 (with 8 df, p = .001). Apart from leading 
to this geometric interpretation of x2,  a further justification 
for the chi-squared metric is that it is the Mahalanobis 
metric between row profiles based on their estimated 
covariance matrix under the homogeneity assumption 
(Greenacre 1984, sec. 4.4). 

Correspondence analysis provides a low-dimensional 
explanation for the lack of homogeneity in the row profiles 
or, equivalently, for the interaction or dependence be- 
tween the rows and columns of the contingency table. For 
illustration we first concentrate on a one-dimensional ex- 
planation, so the problem may now be posed of finding a 
line that in some sense best fits the cloud of profile points. 
The problem is analogous to finding the largest principal 
component of a set of I observations on J variables, with 
simple generalizations to accommodate the weighting of 
the observations and the weighted metric. A natural choice 
of fit is a weighted least squares one using the row masses 
ri as weights, as this will then provide a decomposition of 
the chi-squared statistic into components along the line 
and orthogonal to it. With this choice of objective function 
it is easy to show that the best line passes through the 
centroid c, since c is the best zero-dimensional (point) 
summary. If the origin of the display is transferred to c, 
then the best-fitting line can be shown to be the principal 
eigenvector of the nonsymmetric matrix 

I 

ri(ai - c)(ai - c ) ~ D ; ~  
i = l  

= (A - lCT)TD,(A - 1cT)D;’, (2.3) 
where D, is the diagonal matrix of row masses and A is 
the matrix with the row profiles as rows (A = [a, a2 

allT) (for a proof see, e.g., Greenacre 1984, sec. 4.1). The 
eigenvector, denoted by vl, defines the first principal axis 
of the row profiles and is normalized in the metric 
D;’ : v:D;’v1 = 1. Figure 2 shows the best-fitting line in 
our example. Remember that this display has been stretched, 
so chi-squared distances are represented as Euclidean dis- 
tances. 

The trace of matrix (2.3) is equal to x’ln, so its set of 
eigenvalues ,I1, ,I2, . . . , or principal inertias, is a decom- 
position of the total inertia. There is an equivalent de- 
composition of x2 into components nA1, n&, . . . . In the 
example the total inertia is .0833, and the first principal 
axis corresponds to an eigenvalue A1 = .0704, which ac- 
counts for 84.5% of the total inertia. 

As in principal components analysis, the eigenvectors 
corresponding to the two largest eigenvalues define the 
plane closest to the row profiles. In general, there are I 
row profiles lying exactly in a (J - 1)-dimensional simplex 
with J vertices. The K eigenvectors corresponding to the 
K largest eigenvalues of (2.3) define the K-dimensional 
affine subspace closest to the profiles in the sense of weighted 
least squares. The exact dimensionality of a set of pro- 
files-that is, the rank of matrix (2.3)-is at most 
min{Z, J }  - 1. 

2.2 interpretation 

In our example the row profiles are contained exactly 
in a plane. Hence their display with respect to the first 
two principal axes is an exact representation of the profiles 
and merely a rotation of the display of Figure 2. The 
geometrical issues are easily illustrated in such a simple 
example; in general the data lie in higher dimensions, and 
all that we see graphically are the projections. This display 
is given in Figure 3 as well as the projections of the profiles 
onto the first principal axis. These projections may be 
interpreted as approximations to the profiles’ actual two- 
dimensional positions. Similarly, in the case of larger data 
matrices a two-dimensional display, say, would approxi- 
mate the high-dimensional configuration of points. 

To assist in the interpretation of the axis, the three ver- 
tices of the triangular coordinate system may also be pro- 
jected onto it. This is analogous to factor analysis, where 
the variables are correlated with a factor to get factor 
loadings that are used in naming the factor. This is achieved 
by projecting the unit coordinate vectors onto the axis, 
which is precisely what we do here. Interpretation consists 
of looking for groupings and contrasts in the configuration 
of projected vertices and in the configuration of projected 
profiles. Thus the proximity of the two points representing 
columns C1 and C2 compared with their distance from C3 
indicates that the axis reflects a contrast between the third 
readership category (“very thorough” reading) and the 
first two categories. In other words, the heterogeneity within 
the contingency table is concentrated into the contrast 
between column C3 and the pair of relatively homoge- 
neous columns C1 and C2. Strictly speaking, there is no 
distance interpretation implied between the positions of 
the projected vertices, since the vertices are always fixed 
in space. It is merely what lies to a greater or lesser extent 
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Scale 

0.5 

CP 

Figure 3. The Best One-Dimensional Summary of the Row Profiles 
in the Stretched Coordinate System, Accounting for 84.5% of the Inertia 
(or equivalently, of 2). The profile points are connected to their one- 
dimensional estimates, which are the projections onto this line. The 
“corner” profiles, or vertices, are also projected onto the principal axis. 

on one side of the axis compared with what lies on the 
other side that provides the axial interpretation. Back in 
the original space, the axis shows us the directions along 
which the profiles vary the most, and the positions of the 
column “corners” let us add a descriptive label to this 
direction of spread. 

On the other hand, the row points along the axis do 
have a specific metric interpretation. Distances between 
projected row points are approximate chi-squared dis- 
tances between the row profiles, and these may be com- 
pared among one another. For example, there appears to 
be more difference between educational groups El and 
E2 than between E3 and E4. 

Finally, there is a geometric relationship between the 
row points and the column points along the axis. In the 
original space (Fig. 1) the vertices are the basis vectors of 
the space and the profile vectors consist of nonnegative 
elements that sum to 1. Thus each row point is a weighted 
average of the vertices, where the weights are the pro- 
portions of each readership category in the respective ed- 
ucation group. We can deduce that education groups on 
the left side of the axis, particularly group E l ,  have rel- 
atively high proportions of the readership categories C1 
and C2, whereas those on the right side, particularly E5, 
have a relatively high proportion of C3. The other edu- 
cation groups are strung out along this axis between these 
two extremes, with the average row profile at the origin 
of the new display. The positions of the row profiles along 
the principal axis reflect their differences on the specific 
feature characterized by the projected column vertices. 

As in principal component analysis, the first principal 

axis may be regarded as optimal in two senses that are 
made equivalent thanks to the Pythagorean theorem. On 
the one hand, it is the best-fitting line in a weighted least 
squares sense (see Pearson 1901). On the other hand, it 
is inertia maximizing, which in the present case of a con- 
tingency table is the same as variance maximizing (see 
Hotelling 1933). In our example the projections of the 
vertices can be considered an optimal quantification, or 
scaling, of the three readership categories. Each education 
group is positioned on this scale according to the average 
value of its members-that is, the projected row profile. 
The variance of these averages, weighted by the respective 
group sample sizes, is maximized by the scaling provided 
by the first principal axis. 

Geometrically, the principal inertia is the weighted av- 
erage of squared (chi-squared) distances from the centroid 
to the projections of the row profiles on the respective 
principal axis. It is an absolute measure of dispersion of 
the row profiles in the direction of this axis. Its maximum 
value is 1, when all projected row profiles coincide with 
projected column vertices. The “significance” of a prin- 
cipal axis may be judged in two different ways. First, in 
the example the axis is successful in that it recovers a 
meaningful ordering of the education groups and read- 
ership groups. Second, if the data do arise from multi- 
nomial sampling, the null hypothesis of random dispersion 
along the first axis may be tested using asymptotic results 
by O’Neill (1978, 1980), summarized by Greenacre (1984, 
sec. 8.1). 

Each principal inertia can be further decomposed into 
components due to each row profile. The study of these 
components, or contributions to inertia, is another impor- 
tant feature of the geometric interpretation. The rows that 
contribute highly to a principal axis have, in effect, largely 
determined the orientation and thus the identity of the 
corresponding principal axis. Also worth studying in con- 
junction with the display are the cosines of the angles 
between the row profiles’ deviation vectors from the cen- 
troid (e.g., shown in Fig. 2) and the principal axis. These 
permit a description of how closely each profile vector 
lines up, or “correlates,” with a principal axis; thus they 
measure how well the display approximates the profiles’ 
true positions (Greenacre 1984, sec. 3.3; Lebart, Mori- 
neau, and Warwick 1984, pp. 46-49). 

2.3 The Dual Problem 
The methodology just described may be applied in an 

equivalent, symmetric fashion to the columns of the con- 
tingency table N-that is, by repeating the preceding on 
the transposed table NT (J x I ) .  We now look for the 
principal axes of the column profiles, weighted by masses 
that are the elements of c, in a space with a chi-squared 
metric defined by the diagonal matrix D;l. Thus the ele- 
ments of r and c play dual roles, weighting the profiles on 
one hand and rescaling the dimensions on the other. 

There is no need to recompute the dual solution, since 
it may be obtained from the first problem (Greenacre 
1984, sec. 4.1). The total inertia and its decomposition 
into principal inertias are exactly the same in the two prob- 
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scale 

0.5 

Figure 4. The Display Dual to Figure 3 of the Stretched Column Profiles b,, Where the Row Points Are the Projections of the Vertices of the 
Five-Cornered Simplex. The first principal axis is again the horizontal axis, and the projections of the profiles and vertices onto the axis are 
shown. Again, 84.5% of the total inertia is accounted for by this axis. Notice that the positions of the projected column profiles are a uniform 
contraction of the positions of the column vertices in Figure 3. 

lems. In each problem the projections of profiles onto their 
kth principal axis can be obtained from the projections of 
their respective vertices in the dual problem, rescaled by 
a factor equal to Ailz, the square root of the kth common 
principal inertia. A similar duality does not exist in prin- 
cipal component analysis, unless the rows and columns of 
the data matrix sum to 0. 

Figure 4 shows the dual solution of our illustrative ex- 
ample, where the chi-squared distances between the col- 
umn profiles are displayed exactly and the five vertices 
representing the row points are projected onto the display. 
(This differs slightly from the previous situation in which 
the vertices were also displayed exactly in two-dimensional 
space. Here the plane cuts through the four-dimensional 
simplex defined by the five vertices.) 

This close relationship between the two problems prompts 
most users of correspondence analysis to overlay the re- 
spective plots of the row and column profiles in a joint 
display. Figure 5 represents the joint display for our il- 
lustrative example. Here we have plotted the first two 
principal axes (and only two for this problem). Thus the 
projection of the points onto the I, axis is the joint display 
for the one-dimensional solutions in Figures 3 and 4. In 
this display the interrow and intercolumn distances may 
be interpreted as approximate chi-squared distances, but 
row-to-column distances are meaningless. A practical ad- 
vantage here is that the dispersions of row and column 
profiles are more or less the same, whereas in the plot of 
profiles and vertices, the profiles are often a very tight 

bunch of points in the display, needing magnification to 
be able to interpret their relative positions. 

2.4 Supplementary Points 

Once the principal axes of a cloud of profiles have been 
established, it is possible to display additional points that 
are defined in the profile space. Such points may be pro- 
jected onto individual principal axes or onto any subspace 
spanned by principal axes. The ability to display such sup- 
plementary points is useful for enhancing the interpreta- 
tion of the principal axes and the patterns observed in the 
displayed points. We have already illustrated this idea by 
projecting the unit profiles, or vertices, onto a principal 
axis (Figs. 3 and 4). 

As a further example, we might have reason to subdivide 
education group E2 into two subgroupssay, private schools 
with frequencies E2a : [8 15 51 and public schools with 
frequencies E2b : [lo 31 151. Their profiles may be added 
to the display computed from the original data and pro- 
jected onto the first principal axis (Fig. 5). Alternatively, 
one could combine the frequencies in an observed cluster 
in order to plot a point that represents the cluster. 

Another use of supplementary points by Greenacre (1984, 
sec. 8.1) is reminiscent of bootstrapping. Replicated sets 
of row frequencies may be randomly generated by mul- 
tinomial sampling. The new profiles can be displayed as 
supplementary points in order to gauge the sampling 
variability of the profile points (Fig. 5). 
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E2a 
h,=.0704 
(84.5%) 

€2 
c2 

E2b 

scale - 
0.1 

€5 
* 4, c3 

4‘ 4. 4’ 4 d 4  4, 

‘ 4  44444 44, 

’ 4 4  4 4 4  

4\4, 4 ’ 

’ 4 4 4  E4 ,44 ,  

4: 
4 44 4 

4 4’ 1 4  
4 4  4’ 

4’ 
\ 

Figure 5. Joint Display of the Row and Column Profiles, Showing Examples of Supplementary Points. Points E2a and €26 are subgroups 
€2. Their profiles are plotted with respect to the existing principal axes. The points labeled “4” are replicated profiles of group €4, generated 
by multinomial sampling and displayed as supplementary points. 

2.5 Relationshlp to the Singular Value 
Decomposition and the Biplot 

This is achieved by defining indicator variables (or “dummy 
variables”) for each category and reexpressing the data in 

The row and column coordinates with respect to prin- 
cipal axes may be obtained from the singular value de- 
composition (SVD) of the double centered and standard- 
ized matrix: 

D;’I2[(l/n)N - ~ C ~ ] D ; ’ / ~  = XD,YT, (2.4) 

where XTX = YTY = I. The singular values are the square 
roots of the principal inertias: D, = D:/2. The principal 
axes of the row and column profiles are the column vectors 
of Dfl2Y and DA/2X, respectively. The K-dimensional co- 
ordinates of profile points and vertex points in the dual 
problems are the rows of the first K columns of the fol- 
lowing matrices: 

Row problem 
row profiles, D; 1/2XD,; column vertices, D; lIzY 

column profiles, D; ”’YD,; row vertices, D; l/,X. 
Column problem 

These results show that correspondence analysis is not a 
biplot (Gabriel 1971, 1981) of the matrix of standardized 
residuals. A biplot would typically plot the rows of the 
first K columns of XD;” and YD;12 (or, e.g., X and YD,) 
in a joint display. The geometric interpretation of this 
biplot is that the scalar product between the ith row point 
and jth column point (with respect to the origin of the 
display) is a least squares approximation to the (i, j)th 
standardized residual. 

3. MULTIPLE CORRESPONDENCE ANALYSIS 

Multiple correspondence analysis is concerned with dis- 
playing the categories of more than two discrete variables. 

the form of a cases-by-variables indicator matrix. Simple 
correspondence analysis of a cross-table of two discrete 
variables is not a natural special case of multiple corre- 
spondence analysis. As a stepping-stone to multiple cor- 
respondence analysis, we explain how it would apply to 
the special case of two discrete variables and how this 
compares with the simple correspondence analysis of the 
same data. 

3.1 The Bivariate Case 

The indicator matrix Z corresponding to the bivariate 
example in Table 1 is of order 312 x 8. The columns refer 
to the eight categories of the two discrete variables, ed- 
ucation and readership, and each row refers to a respon- 
dent in the survey. The data in Z are zeros except for ones 
that indicate to which categories the cases belong. For 
example, there are five cases in category El of education 
and C1 of readership; hence there are five rows of Z that 
have elements [ l  0 0 0 0 1 0 01. Apart from their case 
identifications in the survey, each row can be labeled by 
its respective pair of categories. The five rows that we 
have just described can thus each be labeled “11.” Clearly 
there are only 15 different types of row in Z, corresponding 
to the 15 cells of the contingency table. If Z is partitioned 
as Z = [Z, Z,] in terms of the two sets of categories, then 
the contingency table that cross-tabulates the two variables 
i sN  = ZTZ,. 

Multiple correspondence analysis is essentially the ap- 
plication of the same correspondence analysis algorithm 
described in Section 2 to the indicator matrix Z, resulting 
in the display of the rows (cases) and the columns (eight 
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Figure 6. Multiple Correspondence Analysis of the Bivariate Indicator Matrix Derived From the Contingency Table of Table 1. The row points 
lie in 15 distinct positions, labeled according to their two categories in each case. Thus all rows characterized by the ![rst categories of the two 
variables lie halfway between category points E l  and C1 at the position labeled “1, 1.” The percentages of inertia are artificially low and may 
be adjusted to yield the same percentages (84.5% and 15.5%, respectively) of the equivalent simple correspondence analysis of Figure 5 
(Benzbcri 1979; Greenacre 1986). 

categories). The two-dimensional principal-axes display of 
the row profiles and the column vertices is given in Figure 
6. Applying the same rules of interpretation of simple 
correspondence analysis to this situation leads us to the 
following geometric description of this display. 

First, the eight vertices of the simplex within which the 
row profiles lie are projected onto the plane in the posi- 
tions indicated. Contrary to simple correspondence anal- 
ysis, the vertices, or unit points, are now artificial extreme 
responses that cannot be achieved in the data set. The 
subset of five points for education and the subset of three 
points for reading level each has the same centroid, namely, 
the origin of the display. Each category point is again 
weighted by the marginal frequency of the respective cat- 
egory. 

Second, the row profiles are now of a very special form. 
Each row of Z consists of zeros, except for two ones in 
the respective category positions, so each row profile has 
values of t in these same positions and 0 elsewhere. In 
this situation the barycentric relationship implies that each 
row point will lie midway between its two respective cat- 
egory points. For example, the five points labeled “11” 
fall midway between projected vertices El and C1, the 
seven points labeled ‘‘12” fall midway between El and 
C2, and so on for each of the 15 clumps of row points. 

The principal axes are the axes of maximum variance of 
the row points, that is, of the 15 clumps of points, weighted 
by the size of the respective clumps. 

The positions of the category points may be recovered 
from the analysis of the contingency table N. In fact, the 
positions of the education and readership category points 
are exactly those of the row and column vertices in Figures 
4 and 3, respectively [for a proof of this result, see Green- 
acre (1984, pp. 130-131) or Lebart et al. (1984, pp. 86- 
87)]. Carroll, Green and Schaffer (1986) discussed this 
equivalence at length and interpreted the distances be- 
tween vertices. 

There is also a direct relationship between the principal 
inertias of the two analyses: If Lk is the kth largest principal 
inertia in the analysis of N, then i(1 + A i l 2 )  is the kth 
largest principal inertia in the analysis of Z. This does not 
fully account for all of the eigenvalues in the analysis of 
the 312 x 8 indicator matrix, but the remaining eigen- 
values and their associated eigenvectors are irrelevant to 
the geometric interpretation. These remaining eigenvalues 
that can effectively be ignored are less than or equal to 4. 
The presence of these redundant eigenvalues is to lower 
the percentages of inertia (as seen in Fig. 6). We know 
that the first principal axis accounts for 84.5% of the total 
inertia of N, whereas only 25.5% is accounted for by the 
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first principal axis of Z. The latter percentage is a highly 
pessimistic measure of explained variance, and more re- 
alistic alternatives were given by BenzCcri (1979) and 
Greenacre (1986). 

3.2 The Multivariate Case 
The coding of categorical data in an indicator matrix 

provides a natural extension to more than two variables. 
Suppose there are Q categorical variables so that the in- 
dicator matrix is of the form Z ( I  x J )  = [Z, *.. Z,]. 
Suppose that the qth variable has 5, categories and hence 
that Z, is I x 5, and that J = zf=, Jq is the total number 
of categories. There are J1  x x Jq types of responses 
possible. 

Again the same correspondence analysis algorithm may 
be applied to Z to obtain a graphical display of the J 
categories and, if necessary, the I row points. An example 
will demonstrate the generalization of the geometric inter- 
pretation in this case. 

Figure 7 shows the display of a set of data from another 
readership survey. Three hundred fifteen people are cat- 
egorized according to their readership of 19 publications 
(Q = 19). For each publication there are five categories 
of readership (Jq = 5 for all q): “don’t read,” “glance,” 
“read some,” “read most,” and “read all.” The indicator 
matrix analyzed is thus of order 315 x 95. For any given 
configuration of column points representing the 95 cate- 
gories, each respondent (row) point lies at the average 

scale - 
0.5 

2 

(2462%) c 

4 

4 
4 4 

4 
4 

4 

4 

4 4 4  ’ 

4 4 

4 

4 
1 

4 

1 

1 
1 
1 

1 

Figure 7. Multiple Correspondence Analysis of the 19-Variate Indicator Matrix of Readership Data. For each of 19 publications there are five 
category points: 0, do not read; 1, glance; 2, read some; 3, read most; 4, read all. Only the projected vem’ces of the category points are displayed. 
The computed percentages of inertia for the two axes are 34.3% and 13.4%, respectively, but we show the more realistic lower bounds according 
to results by Greenacre (7 986). 
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position of the 19 category points that characterize his or 
her response vector. Figure 7 is that configuration of cat- 
egory points that maximizes the dispersion of the respon- 
dent points in a planar display. 

Notice that points spread and contrast along diagonal 
axes rather than the principal axes. This is of no conse- 
quence to our final conclusions. The “don’t read” cate- 
gories of all of the media are in a tight bunch on the lower 
right side, opposing all of the “reading” categories. There 
are a number of “read most” points and a “read all” point 
on the right near the “don’t read” categories, which means 
that some people read a few specific publications inten- 
sively, but very little else. 

The vertical spread of the reading categories from bot- 
tom left to top right shows the spread of the reading thor- 
oughness categories. The “glance” categories are well sep- 
arated. There is a large overlap of the middle two categories 
of thoroughness. Finally, the “read all” categories are gen- 
erally well separated from the other categories. Remember 
again that the patterns in the category points reflect the 
patterns among the respondents. Where the responses “read 
some” or “read most” occur, there is usually a mixture of 
these and the distinction between these two categories is 
rather blurred, compared with the quite separate “glance” 
and “read all” categories. 

This display reveals a pattern that might be unexpected 
beforehand. It is tempting to assign unidimensional scale 
values such as 0, 1, 2, 3, 4 to the reading categories and 
use these values in conventional multivariate analysis. But 
the assumption that the “read some” and “read most” 
categories are separate in the data is contradicted by the 
display. It also appears that at least two dipensions should 
be considered in the reduction of these data: one that 
measures the readho-read dichotomy by counting the 
number of publications read, say, and one that quantifies 
the thoroughness of actual reading, not necessarily on an 

I 

‘“0 \ 

age lowest 

highest \ 0 

d u c a t  ion 
scale - 
0.5 

Figure 8. Positions of Supplementary Education and Age Categories, 
to Be Overlaid on Figure 7. 

equi-spaced scale. The optimal scaling interpretation, 
mentioned in Section 2.2 for simple correspondence anal- 
ysis, carries over to the multivariate case as follows. Any 
set of scale values for all of the categories (i.e., columns 
of Z) implies a score for each respondent (i.e., row of Z), 
where the score is the average scale value of the categories 
into which the respondent falls. The scale values provided 
by the positions of the category points on the first principal 
axis yield row scores with maximum variance. 

In this survey we had additional biographical informa- 
tion for each respondent. Figure 8 shows the positions of 
five categories of education and four categories of age as 
supplementary column points (these would normally be 
overlaid on Fig. 7). Education seems to line up more or 
less in agreement with the read/no-read dichotomy, with 
the lower education groups reading the least. Age moves 
in the opposite direction, with the youngest group reading 
the most, the oldest the least. Education shows a higher 
association with the display than age, because its category 
points are spread out more. 

Although all 315 respondent points may be displayed, 
attention in such analyses shifts to groups of row points- 
for example, row points grouped by biographical cate- 
gories. This is an alternative interpretation of the display 
of the biographical categories. A point representing the 
lowest category of education can be defined as the centroid 
of all of the respondent points who fall into this category. 
The fact that this centroid is on the right side of the display 
indicates that this group of respondents has a relatively 
high number of “don’t read” responses. 

4. MORE GENERAL CODING SCHEMES 

Many different types of data may be recoded into a form 
suitable for correspondence analysis. The most commonly 
used coding scheme is called fuzzy  coding (coduge flou in 
the French literature), a generalization of the strict logical 
coding of the indicator matrix. Instead of a 1 indicating a 
specific category, with zeros elsewhere, we can assign a 
set of nonnegative values that add up to 1. These can even 
be considered probabilities that the case lies in the re- 
spective categories. Fuzzy coding can be used to recode 
continuous data into ordered categories. When a data value 
lies near the boundary between categories, it may be al- 
located to both categories in appropriate amounts. Various 
ways of handling missing data can be explored using dif- 
ferent coding schemes (Greenacre 1984, sec. 5.3; Meul- 
man 1982). 

The special case of two categories per question (Le., Jq 
= 2 for all q )  is often encountered, especially when dealing 
with bipolar rating scales. For example, Kosslyn (1985, 
table 1) presented ratings of five books on graphics ac- 
cording to 14 criteria. The books are by Bertin (1983), 
Chambers, Cleveland, Kleiner, and Tukey (1983), Tufte 
(1983), Fisher (1982), and Schmid (1983), and they will 
he denoted by B, C, T, F, and S, respectively. Each rating 
scale is 10 points, with 1 indicating “very poor” and 10 
“excellent.” In a large survey one might consider treating 
each of the criteria as a discrete variable with 10 categories, 
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Figure 9. Correspondence Analysis of “Doubled” Table of Book Evaluation Data (Kosslyn 1985). The books are by Bertin (B), Chambers et 
el. (C), Tufte (T), Fisher (F), and Schmid (S). The criteria are readability (r), originality (0). generality (g), discriminability (d), visual properties 
(v), processing priorities (p), perceptual distortion (c), perceptual grouping (e), memory limits (m), ambiguity (a), inferences (i), purposes (s), 
questions (q), and data formats (f). For each criterion the favorable pole of the scale is labeled ‘‘ + “ and the opposite pole “ - .” Notice that 
this is the joint display of the row and column profiles. 

then exploring the data by multiple correspondence anal- 
ysis. This is clearly not possible with a sample size of 5, 
so we treat each criterion as a fuzzy categorical variable 
with just two categories. These two categories, labeled by 
( 6  + ’7 and ‘ 6  - ,” are the two extreme poles of the scale. 
The data are coded in terms of how much weight is allo- 
cated to the respective poles. For example, a rating of 9 
on readability for book C is coded as [.9 .l] for the re- 
spective categories, showing that a weight of .9 is allocated 
to the positive readability pole and .l to the negative read- 
ability pole. The process is called doubling (de‘doublernent 
in French) because the number of columns is effectively 
doubled. In this example the original 5 x 14 data matrix 
is converted into a 5 x 28 fuzzy indicator matrix. 

The correspondence analysis of this matrix i s  given in 
Figure 9. Each criterion is represented by its two polar 
points and these lie on a line through the origin. The 
analysis can be thought of as a multiple correspondence 
analysis in which the category points are constrained to 
be regularly ordered and spaced on a straight line. Each 
pair of + and - points has the usual property of having 
its centroid at the origin, so the origin lies exactly at the 
mean rating for the particular criterion. All of the + points 
are clustered on the left side, opposing the - points on 
the right side, apart from the criterion “readability” that 
lies in exactly the opposite direction. This horizontal axis 
separates book B (on the left) from the other four books 
on the right. B generally receives the highest ratings, ex- 
cept for “readability.” The other books separate out along 

the second vertical axis. S seems to be the least liked, 
opposing C, which rates highly on “originality” and its 
treatment of “perceptual distortion” and “drawing infer- 
ences.” 

Continuous variables may also be coded into a bipolar 
form. Escofier (1979) proposed that a standardized vari- 
able z (with mean 0 and variance 1) be reexpressed as two 
fuzzy variables: y +  = (1 + 2)/2 and y -  = (1 - z ) / 2 .  
The centroid of each pair of + and - points is still at the 
origin, and their masses are the same, so they are equi- 
distant from the origin. The coding reflects to what extent 
an observation lies above or below the mean. This scheme 
is useful when analyzing continuous and discrete data at 
the same time. 

The general principle of such coding schemes is that a 
constant unit is spread across two or more categories of 
the recoded variable, possibly in negative amounts as in 
the last example. The geometry is a simple generalization 
of that for indicator matrices and usually amounts to talk- 
ing about weighted averages of category points instead of 
simple averages. 

5. DISCUSSION 

Because correspondence analysis is really the principal 
components analysis of categorical data, it is surprising 
that the technique still remains relatively unknown outside 
the fields of psychology and ecology. French statisticians 
have elevated it to a jack-of-all-trades technique of data 
analysis. They place large emphasis on how data, often at 
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different measurement levels, are reexpressed prior to 
analysis. The same algorithm and geometric framework 
can handle a multitude of different data types and struc- 
tures. 

Finally, although we have motivated simple correspon- 
dence analysis from a geometric point of view, the ge- 
ometry of the indicator matrix in multiple correspondence 
analysis is admittedly not as convincing. Distances be- 
tween the row profiles of an indicator matrix and projec- 
tions of artificial column vertices have less intuitive appeal. 
However, the scaling interpretation remains attractive in 
this case; the displays are graphical representations of op- 
timal scale values for the categories. 

[Received June 1986. Revised October 1986.1 
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