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Abstract

Principal component analysis is a versatile statistical method for 
reducing a cases-by-variables data table to its essential features, 
called principal components. Principal components are a few linear 
combinations of the original variables that maximally explain the 
variance of all the variables. In the process, the method provides an 
approximation of the original data table using only these few major 
components. This Primer presents a comprehensive review of the 
method’s definition and geometry, as well as the interpretation of its 
numerical and graphical results. The main graphical result is often in 
the form of a biplot, using the major components to map the cases and 
adding the original variables to support the distance interpretation 
of the cases’ positions. Variants of the method are also treated, such as 
the analysis of grouped data, as well as the analysis of categorical data, 
known as correspondence analysis. Also described and illustrated are 
the latest innovative applications of principal component analysis: for 
estimating missing values in huge data matrices, sparse component 
estimation, and the analysis of images, shapes and functions. 
Supplementary material includes video animations and computer 
scripts in the R environment.
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The maximum number of PCs is equal to the number of variables, 
five in this case, so this process can continue three more times to obtain 
PC3, PC4 and PC5, by which time 100% of the total variance will be 
explained. The first two PCs identified in Eqs. 1 and 2 can be computed 
for each of the 149 countries/territories and plotted in a scatterplot 
(Fig. 1). The countries/territories are classified into ten regions, so the 
positions of the regional averages can also be shown.

The signs of the coefficients are indeterminate. Different computer 
algorithms can produce the negative of PC1 or PC2, with all the signs  
reversed, resulting in an equivalent interpretation, but in the opposite 
direction. The user is at liberty to multiply any principal component 
by −1, which inverts the corresponding axis in Fig. 1, to facilitate the 
interpretation.

This visualization in Fig. 1 shows the approximate positions of the 
countries/territories in terms of all five variables condensed into the two  
principal components. The countries/territories are spread out in the 
two-dimensional plot as much as possible, maximizing the variance. In 
the following sections, interpretation of the country/territory positions 
will be facilitated by showing the variables themselves in the display, 
alongside any other variables observed on the countries/territories, 
such as economic indicators.

Experimentation
PCA workflow
Step 1: standardization of variables. The first and most important 
step in the PCA workflow is to make a decision about standardiza-
tion of the variables. PCA aims to explain the variables’ variances, so 
it is essential that certain variables do not contribute excessively to 
that variance for extraneous reasons unrelated to the research ques-
tion. For example, the variable Life was measured in years, Generosity  
in positive and negative amounts and the other three variables lay in  
a 0 to 1 interval. In particular, Life has a very large variance owing to 
its high numerical range of years. If no adjustment is made to its scale, 
it would dominate the total variance, with the PCA consequently 
being biased towards explaining that variable at the expense of the  
others.

In such a situation, with variables on different scales, a stand-
ardization is imposed. Dividing each variable’s values by the respective 
standard deviation is sufficient for removing the scale effect. At the 
same time, each variable is usually centred by subtracting its mean. 
This results in a set of scale-free variables, each with mean 0 and vari-
ance 1, as done here for the five variables. The contributions of these 
variables to the total variance are thus equalized, irrespective of the 
possible differences in their substantive importance for the research 
question. As a general rule, software for PCA does not include auto-
matic standardization of the variables. If standardization is required, 
the user has to perform this manually before applying PCA or choose 
an option for standardization if the software includes it.

Alternative forms of standardization are possible. Sometimes, pre-
standardization is not necessary8, for example, if all the variables are 
on the same scale. If positive ratio-scale data are log-transformed, this 
is already a form of variable standardization, which gives comparable 
additive scales to reflect multiplicative differences in the variables, 
meaning that no further transformation is required12.

Step 2: dimension reduction. The present dataset, with n = 149 rows 
and p = 5 columns, is five-dimensional. The process of extracting the 
best small set of dimensions, often two, to facilitate interpretation and 
visualization is called dimension reduction, or in algebraic parlance, 

Introduction
Principal component analysis1–9 (PCA) is a multivariate statistical 
method that combines information from several variables observed 
on the same subjects into fewer variables, called principal components 
(PCs). Information is measured by the total variance of the original 
variables, and the PCs optimally account for the major part of that 
variance. The PCs have geometric properties that allow for an intui-
tive and structured interpretation of the main features inherent in a 
complex multivariate dataset.

An introductory example is from the World Happiness Report10 
conducted in 2021 as part of the Gallup World Poll in 149 countries/
territories. This international study contains a measure of happiness 
on a 0 to 10 scale called the Cantril ladder11, as well as several indica-
tors that possibly explain this happiness score. Here, five indicators 
are considered: social support (abbreviated as Social), healthy life 
expectancy (Life), freedom to make your own life choices (Choices), 
generosity of the general population (Generosity) and perceptions of 
internal and external corruption levels (Corruption). PCA capitalizes 
on the relationships between these five indicators. If the data were ran-
dom, with no correlation between any of the indicators, this approach 
would be fruitless. PCA looks for a linear combination of the indicators 
that has maximum variance; in other words, it combines them together 
in a way that reflects the greatest variation across the 149 countries/
territories. The following linear combination achieves this objective, 
and it defines the first principal component, PC1:

Social Life Choices
Generosity Corruption

PC1 = 0.538 + 0.563 + 0.498
−0.004 − 0.381

(1)

Since the original indicators, usually called statistical variables, 
have different scales and ranges, they have each been standardized to 
have mean 0 and variance 1. As a result, their total variance is 5. Thanks 
to this standardization, the coefficients of the variables, sometimes 
called loadings, indicate the strength of contribution to the principal 
component, while their signs indicate whether the influence is posi-
tive or negative. PC1 can also be considered the closest correlate to 
all five variables. In other words, PC1 is a single-variable summary of 
what the original indicators most have in common. If each of these 
five variables with a variance of 1 is regressed on PC1, their explained 
variances — usually denoted by R2 and identical to the squared correla-
tions with PC1 — are 0.680, 0.744, 0.583, 0.000 and 0.341. Hence, the 
second variable (Life) makes the largest contribution to PC1, whereas 
the fourth variable (Generosity) has almost none. The sum of these 
explained variances divided by the total 5 is 0.470, meaning that PC1 
has explained 47.0% of the total variance.

As 53.0% of the total variance has been left unexplained, a second 
linear combination of the variables is sought to explain as much of 
this residual variance as possible. The solution is the second principal 
component, PC2:

Social Life Choices
Generosity Corruption

PC2 = −0.266 − 0.243 + 0.258
+ 0.799 − 0.407

(2)

A condition in finding PC2 is that it should be uncorrelated with 
PC1, so the principal components measure different features in the data. 
Again, the five original variables can each be regressed on the two prin-
cipal components, leading to increased R2 values of 0.767, 0.816, 0.664, 
0.782 and 0.544, respectively. The overall explained variance is 0.715, that 
is, 71.5%. PC2 has, therefore, explained an additional 24.5% of the variance.
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low-rank matrix approximation. The top pathway of Fig. 2 shows how 
the principal components can be computed using the eigenvalue  
decomposition (EVD) of the covariance matrix. The EVD computes 
eigenvalues, denoted usually by λ1, λ2, …, which in the five-dimensional 
example consist of five positive values in descending order, as well 
as eigenvectors corresponding to each eigenvalue, denoted by v1, v2, ….  
The coefficients defining the principal components PC1 and PC2 in 
Eqs. 1 and 2 are the elements of the two eigenvectors correspond-
ing to the two highest eigenvalues. The eigenvalues themselves are  
the parts of the variance that each PC explains, and the sum of all the 
eigenvalues is equal to the total variance. Hence, the percentages on 
the axes of Fig. 1a and b are λ1 and λ2 as percentages of the sum of all 
five eigenvalues.

The lower pathway in Fig. 2 shows the more efficient computa-
tional workflow. The singular value decomposition (SVD), a generaliza-
tion of the EVD to arbitrary rectangular matrices, is applied directly to 
the matrix, which is optionally standardized, but at least centred. This 
results in a set of positive singular values and two sets of vectors, the left 
and right singular vectors, for the rows and columns, respectively. The 
singular values are proportional to the square roots of the eigenvalues 
of the covariance matrix and the left and right singular vectors lead 
to the joint display of cases and variables in the form of a biplot13–15. 
Specifically, the first two left singular vectors, u1 and u2, scaled by the 
respective singular values, α1 and α2, give the coordinates of the cases 
in Fig. 1a and b. These coordinates, defined by the principal compo-
nents, are also called principal coordinates. The coordinates of the 
direction vectors representing the variables in the biplot are given by 
the respective pairs of values in the two right singular vectors, v1 and v2,  
which are identical to the first two eigenvectors of the covariance 
matrix. These coordinates are also called standard coordinates. Box 1 
shows a technical algebraic definition of the PCA coordinates obtained 
directly from the SVD, also summarized in this musical illustration of 
the SVD. As indicated in the notes in Box 1, an alternative way of making 
a biplot is to leave the left singular vectors unscaled and to scale the 
right singular vectors by the singular values, which focuses attention 
on the covariance and correlation structure of the variables, and less on  
the geometry of the cases.

Step 3: scaling and interpretation of the biplot. The biplot of the data 
from the 149 countries/territories is shown in Fig. 1b. The countries/
territories are in the same positions as the scatterplot in Fig. 1a, but 
now use symbols to make the display less cluttered. Their coordinates 
are obtained either by computing the linear combinations originally 
defined as the principal components in Eqs. 1 and 2 for each country/
territory, or equivalently using the left singular vectors scaled by the 
singular values. The arrows are defined by the pairs of coefficients in 
the two linear combinations. For example, the vector Social has coor-
dinates [0.538, −0.266] in Fig. 1b, according to the scale on the axes for 
the variables; see Eqs. 1 and 2.

The five variable directions define biplot axes onto which the 
countries/territories can be projected perpendicularly. The means 
of the variables are all at the origin owing to the data centring and the 
arrows indicate increasing values. Therefore, when two variables point 
in the same direction, such as Life and Social, countries/territories 
will project similarly onto them, suggesting that the variables are 
strongly correlated (their actual correlation is 0.723). Conversely, for 
two variables that point in opposite directions, such as Corruption 
and Choices, this will suggest a negative correlation, since the projec-
tions of the countries/territories onto them will line up in opposite 

directions (the actual correlation is –0.401). Suggested correlations are 
closer to actual ones when the dimensions explain a high percentage of  
total variance.

Although the spatial interpretation with respect to the variable 
direction is most important, it is often possible to interpret the princi-
pal component directions themselves, namely the dimensions, called 
principal axes. The first dimension is clearly a negative-to-positive 
scale in terms of the four variables apart from Generosity. By contrast, 
Generosity is the main driver of the second dimension, mainly oppos-
ing Corruption. For example, looking at the positions of the UK, Malta, 
Germany and France in Fig. 1a, they are all at the same position on the 
first horizontal dimension, but spread out vertically on the second. 
Thus, they have the same position for their overall size on this first 
dimension, but the composition of their ratings (their shape) is differ-
ent for the four locations. The UK tends to be higher than average on  
Generosity and lower than average on Corruption, and also lower on Life 
and Social, but nevertheless higher than average. On the other hand, 
France is higher on all three variables pointing downwards and lower 
than average on Generosity.

Step 4: optional de-emphasizing of cases or variables in the biplot. 
To show all 149 country/territory names in Fig. 1a, it was necessary 
to distinguish between countries/territories that contributed more 
than average to the solution dimensions16. The left singular vectors 
corresponding to the countries/territories, without scaling, each have 
a sum of squares equal to 1. The individual squared values are a direct 
measure of the proportional contributions to the variance explained 
on the respective dimension. The average contribution to a dimension 
is 1 divided by the number of points; 1/149 in this case. The countries/
territories with contributions greater than this threshold on either  
of the two dimensions are the ones plotted in higher intensity in Fig. 1a. 
The others, which are less than this threshold on both dimensions, are  
plotted using lighter labels. Consequently, the high contributors  
are the points furthest from the origin on the respective dimensions. As 
an alternative, the countries/territories were represented in Fig. 1b by 
symbols so that their regional dispersions could be visualized without 
indication of specific countries/territories.

Step 5: Optional adding of supplementary variables to the biplot. 
If additional variables are available, these can be added to the biplot as 
supplementary variables, or passive variables. The directions of the five 
variables in the two-dimensional biplot can be equivalently obtained by 
regressing the variables on the two principal components. Similarly, the 
direction of any other variable observed in the cases can be plotted to 
enrich the interpretation. The difference is that a supplementary vari-
able has not been optimized in the biplot, like the five active variables 
that were used to construct the solution. Two variables, the happiness 
score itself (happy), and the logarithm of gross domestic product 
(logGDP), are available for the 149 countries/territories, represented in 
Fig. 1b as arrows. The coordinates of their arrowheads are the regression 
coefficients of each variable, also standardized, when regressed on PC1 
and PC2. The principal components have explained variances (R2) equal 
to 0.728 and 0.756 in these respective regressions, with happy being 
significantly explained by PC1 (P < 0.0001) and logGDP significantly 
explained by PC1 and PC2 (both P < 0.0001). The variable logGDP fol-
lows closely the directions of Life and Social, whereas the happiness 
score has a direction close to PC1 between these two indicators and 
Choices. The happiness score has a correlation of 0.850 with the first 
principal component.

https://www.youtube.com/watch?v=JEYLfIVvR9I9I
https://www.youtube.com/watch?v=JEYLfIVvR9I9I
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EVD and SVD matrix decompositions
There are several equivalent ways to explain how the EVD and SVD 
provide optimal solutions in a PCA. An intuitive way is to accept 
that the eigenvalues, which are in decreasing order, maximize the 

explained variances on each dimension, and these dimensions are 
uncorrelated, so parts of the explained variance can be accumu-
lated over the dimensions. As a result, the first eigenvalue maxi-
mizes the explained variance in the first dimension, the second 
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eigenvalue maximizes the explained variance in the second, and 
the sum of the first two maximizes the explained variance in the 
plane of the first two dimensions, and so on for higher-dimensional  
solutions.

Another way is to think of the SVD as the solution of approximating 
the data matrix in a low-dimensional space, illustrated schematically 
in Fig. 3. Each row of the standardized data defines a point (shown as a 
solid dot) in multidimensional space, with as many dimensions as vari-
ables. If an approximation of these points in two dimensions is required, 
any plane through the average point c (for centroid) is imagined onto 
which all the points are projected perpendicularly; their projections 
are shown as empty dots in Fig. 3b. This is equivalent to finding the 
closest point to each multidimensional point on the plane. Figure 3c 
shows the right-angled triangle made by each point with its projection 
and the centroid. The hypotenuse distance di of the point to the cen-
troid is fixed, whereas both ei, the distance of the point to its projection, 
and d̂i, the distance from the projected point to the centroid, depend 
on the orientation of the unknown plane. To find the optimal plane in 
terms of least squares, the aim is to minimize the sum of squared dis-
tances e∑i i

2, in other words, the closeness of the plane to all the points. 
This is equivalent to maximizing d∑ ˆ

i i
2

, since the total d∑i i
2 is fixed. 

Averaging by dividing by n turns this into a decomposition of 
variance.

This is exactly the solution that the SVD finds, a least-squares 
approximation of the rows of the data matrix in a lower-dimensional 
subspace. All the approximated rows form a matrix which comes clos-
est to the data matrix in terms of least squared differences between 
the original and approximated matrices17, often called a least-squares 
matrix approximation. The equivalent approach, using the EVD of the 
covariance matrix, equivalently identifies the orientation of the two 
dimensions of the optimum plane, the principal component directions, 
leading to the same matrix approximation.

Because of the spatial interpretation of a PCA, it is essential to 
display the results in a space where the dimensions have the same 
physical scale. For example, in Fig. 1a and b, the unit lengths on the 
horizontal and vertical axes are physically equal, for each set of scales. 
In the terminology of image displays, the PCA graphics should have an 
aspect ratio of 1, like a spatial map or an architectural plan.

Variations of the PCA theme
There are several multivariate methods that are simple variants of PCA. 
One possibility is to change the way the distance function is defined, 
which implies a change to the measure of total variance. Another varia-
tion is to assign different weights to the cases so that some cases count 
more than others in determining the PCA solution.

The distances between the projected points in a PCA approxi-
mates the Euclidean distances between the points in the full space. The 
Euclidean distance between points i and i′ is defined as:

∑d i i y y( , ′) = ( − ) (3)
j

ij i j′
2

where yij and yi′j refer to the standardized data. If the original data are 
denoted by xij and standardization is performed by subtracting the 
mean xj and dividing by the standard deviation sj, then y x x s= ( − )/ij ij j j 
and (3) reduces to

∑d i i x x s( , ′) = ( − ) / (4)
j

ij i j j′
2 2

called the standardized Euclidean distance, where the inverses of the 
variances wj = 1/sj

2 can be considered as weights on the variables.
A variant of PCA is correspondence analysis, which is generally 

applicable to two-way cross-tabulations, general frequency data or data 
in the form of percentages. In correspondence analysis it is the relative 
values of the data that are of interest, for example the rows divided by 
their row totals, called profiles. The distances between profiles, the 
chi-square distances, have a form similar to the standardized Euclidean 
distance. Denoting the (row) profiles by rij:

∑d i i r r c( , ′) = ( − ) / (5)
j

ij i j j′
2

where cj is the jth element of the average profile. Thus, for such relative 
frequency data, the mean profile element cj substitutes the variance sj

2 
in Eq. 4, and the implied weights on the variables are the inverses 1/cj. In  
correspondence analysis, weights are also assigned to the profile 
points.

As an example of case weighting in PCA, suppose that there are 
groups of cases and that the object is to find dimensions that discrimi-
nate between the groups, to explain between-group variance rather 
than the total between-case variance. Weights proportional to the 
group sizes can be allocated to the group means, and the group means 
themselves become the points to be approximated by weighted least 
squares. The group means with higher weight have a more important 
role in determining the low-dimensional solution. The original case 
points receive zero weight but can still be projected onto the plane 
that approximates the group points. These are called supplementary 
or passive points, as opposed to the group means, which are now the 
active points. This could have been done for the previous analysis of  
the five indicators of happiness if the objective had been to discriminate 
between the ten regions.

Another variant of PCA is logratio analysis (LRA), which has its 
origin in geochemistry but is increasingly being applied to biological 
data, especially microbiome data and omics research18,19. These data 
are generally compositional, since the totals of each sample are irrel-
evant and it is the relative values that are of interest. LRA is the PCA 

Fig. 1 | PCA of the indicators in the World Happiness Report. a, Plot of 
multivariate data for 149 countries/territories using the first two principal 
components (PCs) as coordinate axes. The 82 countries/territories that contribute 
more than average to the two-dimensional solution are shown in darker font 
and are generally further from the centre. The mean positions of the ten regions 
are added, with each mean at the centre of its label. b, Same plot as panel a, but 
showing the countries/territories with regional symbols, with regional means 
indicated by labels. Variables are now shown as arrows of increasing values, with 
the means of all variables at the origin (point [0, 0]). The scale of the variables 

is indicated on the upper and right sides of the plot box. Two supplementary 
variables, happy (the Cantril ladder happiness score) and logGDP (logarithm 
of gross domestic product per capita) have been added. Social, social support; 
Life, healthy life expectancy; Choices, freedom to make life choices; Generosity, 
generosity of the general population; Corruption, perceptions of internal and 
external corruption. c, Scree plot of the percentages of variance explained by the 
first two PCs as well as the percentages explained by the remaining three, showing 
the elbow that suggests that the first two dimensions are signal, whereas the last 
three dimensions are random noise. PCA, principal component analysis.
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of log-transformed data that are initially row-centred, meaning that 
each row of the log-transformed data is centred by its respective row 
mean. Because PCA performs column-centring, LRA is the analysis of 
the double-centred matrix of log-transformed data, which has row and 
column means equal to 0. This is theoretically equivalent to the PCA 
of the much wider matrix of ½p(p – 1) pairwise logratios of the form 
log(xj/xk) for all unique pairs of the p compositional variables20,21. LRA 
uses the logratio distance, which is the Euclidean distance computed 
on the logratios, and weights wj can be optionally allocated to the 
compositional variables19.

Results
Dimensionality of a PCA solution
Usually, the first question of interest is how much of the data vari-
ance is explained by the consecutive dimensions of the solution. 
PCA sorts the data variance into the major features on the leading 
dimensions and what can be considered random noise on the minor 
dimensions. The sequence of explained variance percentages sug-
gests how many non-random major dimensions there are. Figure 1c 
shows the bar chart of the five percentages in the PCA of the five vari-
ables, where the percentages on the first two dimensions, 47.0% and 
24.5%, can be seen to stand out from the last three. This observation 
can be reinforced by drawing a line (red dashed line) through the last 

three, showing that the first two are above that approximate linear 
descending pattern. This bar plot is referred to as a scree plot22 with 
the decision on the dimensionality made by looking for the elbow 
in the sequence of bars. There is a similar line passing through the 
first two bars, which changes slope abruptly compared with the line 
through the last three. Based on this elbow rule, the conclusion is that 
the data are two-dimensional. Therefore, the two-dimensional solu-
tions presented previously are a valid representation of the relevant 
data structure, with 47.0 + 24.5 = 71.5% of the variance explained and 
28.5% of the variance declared random or unexplained. There are 
several more formal ways of deciding on the number of non-random 
dimensions in PCA22–29.

It is not expected that datasets always have exactly two major 
dimensions; they could have a single major dimension or more than 
two. The former case is not problematic — usually the first two dimen-
sions would be visualized anyway, with the caveat that the second 
dimension is possibly compatible with random variation — and inter-
pretation should be restricted to the dispersion of points and variables 
along the first dimension. In the latter case, for a three-dimensional 
solution, three-dimensional graphics can be used (see an example in 
the Supplementary Information), or a selection of planar views of the 
points made. For example, dimensions 1 and 2 could be plotted, and 
then separately, dimensions 1 and 3, or for four-dimensional solutions, 
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Fig. 2 | Schematic view of the PCA workflow. The definition of the principal 
components (PCs) can be obtained using the eigenvalue decomposition (EVD) of 
the covariance matrix of the variables. Standardization is optional, but centring 
is mandatory, and if the variables are divided by their standard deviations, then 
the covariance matrix is the correlation matrix and the analysis is sometimes 
referred to as correlation principal component analysis (PCA). The lower pathway 

is a more efficient one, using the singular value decomposition (SVD) to directly 
give the positions and vectors of the variables in a joint representation. The 
eigenvectors are identical to the right singular vectors. For the lower pathway to 
be exactly equivalent to the upper one, the (optionally standardized) data matrix 
should be divided by n, where n is the number of cases (rows).
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a plot of dimensions 1 and 2, and also a plot of dimensions 3 and 4, could 
be produced, an example of which is given in ref. 30.

Interpretation of a PCA biplot
The PCA biplot in Fig. 1b, explaining 71.5% of the data variance, consists 
of points for the cases and vectors for the variables. As shown in Fig. 3, 
the positions of the points projected onto the reduced-dimensional 
subspace, usually a plane, are an optimal approximation of their exact 
positions in the full multidimensional space. The distances between 

the projected points approximate the distances between the points  
in the full space. Thus, the case (row) points in the biplot solution have a 
distance interpretation, and the quality of the distance interpretation is 
assessed by the percentage of variance explained by the solution dimen-
sions. In fact, the coordinates of the case points are identical, up to a 
scalar multiplying factor, to the solution coordinates of the distance-
based method called classical multidimensional scaling, which takes 
the exact interpoint distances as input and produces low-dimensional 
approximations of the distances31.

The variables, usually represented by vectors from the origin in 
different directions, define the directions and sense of the changing 
values of the variables. Case points can be projected perpendicularly 
onto these directions to understand how the cases line up approx-
imately, but not exactly. To give a concrete example, the country/
territory points can be projected perpendicularly onto a biplot axis 
pointing in the top right direction of Fig. 1b, corresponding to Choices. 
Countries/territories, such as those in Scandinavia — Sweden, Norway 
and Denmark — as well as Singapore are highest in the positive direction 
of the arrow, whereas Afghanistan is the lowest on the negative side, 
towards bottom left. As the origin of the biplot represents the means of  
all five variables, countries/territories projecting on the upper right 
of the biplot axis of Choices are estimated to be above the mean, while 
those on the lower left are estimated to be below the mean. Taking the 
projected values for all countries/territories onto the diagonal sloping 
axis and correlating them with the original data for the variable Choices 
gives a correlation of 0.815. The square of this correlation, 0.664, is the 
part of the variance of the variable Choices that is explained by the first 
two principal components.

The set of countries/territories can be projected on each of the 
other biplot axes defined by the direction vectors. The projected posi-
tions are as accurate as the proportions of explained variance, the R2 
values of 0.767, 0.816, 0.664, 0.782 and 0.544. The second variable, 
Life, has the highest R2, so the way the countries/territories line up on 
this direction in the biplot will be the most accurate. By contrast, the 
projections onto the fifth variable, Corruption, with the lowest R2, will 
give less accurate estimates. The projected positions of the countries/
territories onto the five biplot axes are simply the data values estimated 
by the two principal components PC1 and PC2 by multiple regression, 
reinforcing the idea that PCA is a method of matrix approximation.

Numerical results of a PCA
The percent of variance values were plotted and interpreted in  
Fig. 1c. The quality of the approximation of the variables by the prin-
cipal components has been measured by the respective R2 values. 
Additional numerical results are in the form of correlations and con-
tributions. In this particular case, where the variance of each of the five 
standardized variables is 1, the correlations in the columns of Table 1 
are the principal component direction vectors (eigenvectors) multi-
plied by the respective singular values of the standardized data matrix 
divided by n . For example, the correlation of 0.825 between Social 
and PC1 is equal to 0.538 × 1.532; see the first coefficient of PC1 in Eq. 1. 
Since all the eigenvectors have a sum of squares equal to 1, and thus 
are equally standardized, this illustrates in a different way why the 
correlations with the major dimensions are higher, because the singular 
values are higher.

The sum of squared correlations column-wise in Table 1 are the 
parts of variance, which are identical to the squares of the first row, that 
is, the squared singular values (eigenvalues) divided by n. The sum of 
squared correlations of each variable row-wise over the five dimensions 

Box 1

The singular value 
decomposition and the PCA 
biplot coordinates
Given a data matrix X, with n rows and p columns, already column-
centred, where the column means are subtracted from the 
respective columns, and possibly column-standardized as well, 
the singular value decomposition (SVD) decomposes X into three 
matrices of simple structure:

XX UU DD VVT==

where
•• D is the diagonal matrix of the (positive) singular values α1, α2, … 
in descending order.

•• U and V are the matrices of left and right singular vectors 
(columns u1, u2, … and v1, v2, …) and are orthonormal:  
UTU = VTV = I, namely all �u uk

T  and all v vk
T

� are equal to 0 for k ≠ ℓ 
but equal to 1 for k = ℓ.

Written as a sum of products of the individual vectors, the SVD of 
X is αk

m
k k k1

T∑ = u v , where m is the rank of X. Since the sum of squares 
of each rank 1 matrix k k

Tu v  is equal to 1 and the singular values are in 
descending order, this suggests that taking the first terms of the 
sum will give an approximation to X.

For the biplot the principal component analysis (PCA) row 
(principal) coordinates in r dimensions are in the first r columns of 
UD, and the column (standard) coordinates in the first r columns 
of V. The squares of the singular values, expressed relative to their 
sum, give the percentages of explained variance.

Notes
•• An alternative version of the PCA biplot assigns the singular 
values to the right singular vectors, so the coordinates are in the 
first columns of U (row standard) and VD (column principal). 
This biplot focuses more on the internal structure of the column 
variables, and less on the distances between the row samples.

•• To obtain complete equivalence between the two alternative 
workflows of the SVD and the eigenvalue decomposition (EVD), 
the data matrix X (optionally standardized) should be rescaled 
prior to decomposition as follows: X n/ , in which case the 
squared singular values are variances.



Nature Reviews Methods Primers |            (2022) 2:100 8

Primer

in Table 1 is equal to 1. The sum of squared correlations over the first 
two dimensions is the corresponding R2 for the two-dimensional PCA 
solution. For example, for Choices, 0.7642 + 0.2852 = 0.664. Again, this 
only holds for this particular case of standardized variables.

Contributions of the variables are the squared correla-
tions in the columns of Table  1 relative to their sum. For exam-
ple, in column 1, the contributions by the five variables to the 
first PC are [0.8252 0.8622 0.7642 (−0.007)2 (−0.584)2]/2.348 =  
[0.290 0.317 0.248 0.000 0.145]. Hence, these are just the squares of 
the PC direction vector elements. As a result, it is mainly the first three 
variables that contribute highly to the construction of the first princi-
pal component. Computing contributions to variance on the major 
PCs is useful when there are many variables and the biplot becomes 
too cluttered. A strategy is then to show only the high contributors, 
usually defined as those that are above average. This idea can also be 
applied when there are many rows, since each row also contributes to 
the dimensional variance, using the squared elements of the left sin-
gular vectors. This tactic was used in Fig. 1a, where the above average 
country/territory contributors were shown in a more intense colour 
to improve the legibility of the biplot.

Applications
A high-dimensional grouped dataset
Cases (usually the rows of the data matrix) are frequently grouped, 
and the research question is to identify variables (the columns) that 
account for this grouping. The Khan child cancer dataset32–34 consists 
of a 63 × 2,308 matrix of gene expression data, for 63 children and 
2,308 genes. The children have small, round blue-cell tumours, clas-
sified into four major types: BL (Burkitt lymphoma, n = 8); EW (Ewing’s 
sarcoma, n = 23); NB (neuroblastoma, n = 12); and RM (rhabdomyosar-
coma, n = 20). The data are given as log-transformed, and no further 
standardization is required. The number of variables is higher than 
the number of cases, which is the number of tumours, and the dimen-
sionality of the data is determined by the number of cases minus 1, 
which is 63 – 1 = 62 here. To understand this, and given that the data 
are column-centred, two cases in a high-dimensional space lie exactly 
on a line (1-dimensional), three cases lie in a plane (two-dimensional), 
four cases lie in a three-dimensional space, and so on.

Figure 4a shows the PCA of the data, where the four tumour 
types are grouped by enclosing them in convex hulls. The genes are 
displayed as shaded dots, the darkest being the ones that make the 
highest contributions to the two-dimensional solution. Similarly to 
the countries/territories in Fig. 1a, these high-contributing genes 
are the most outlying in the biplot, and likewise aim to explain the 
variance in the individual cases, rather than the variance between  
the cancer groups. The individual tumours in the different groups can 
be seen to overlap substantially, especially the groups EW and RM. Also 
shown in Fig. 4a are confidence ellipses for the group mean points35. 
These are obtained by estimating the bivariate normal distribution for 
each group of points, and then showing the area containing 95% of the 
bivariate normal probability for the respective bivariate mean, taking 
into account the bivariate correlation and margins of error. For the 
means, the confidence ellipses for RM and EW overlap, but their means 
show significant separation from NB and BL, which themselves appear 
significantly separated in this PCA solution.

To account for the separation of the groups, a different two-
dimensional solution in the 62-dimensional space of the cases can be 
found, where the group means, their centroids, are optimally sepa-
rated. This is achieved by computing the means of the groups and 
using these four points, weighted by their respective group sample 
sizes, as the data of primary interest. Whereas Fig. 4a can be qualified 
as an unsupervised PCA, the PCA in Fig. 4b is now supervised to explain 
group differences. This PCA of the four group means has only three 
dimensions. The percentages on the dimensions are much higher, 
because they are expressed relative to the between-group variance. 
The group means are now highly separated, the convex hulls do not 
overlap and the confidence ellipses are much tighter. In this solution, 
the outlying highly contributing genes will be the ones that account  
for the group differences. Notice that this weighted PCA of the cen-
troids ignores the covariances within the groups, and is thus a simpler 
form of Fisher’s linear discriminant analysis36, also called canonical 
variate analysis37, which does take these covariances into account. 
Supplementary Video 1 shows the exact three-dimensional solution 
of the group centroids. Supplementary Video 2 shows an animation of 
the cases in Fig. 4a transitioning to the group separation in Fig. 4b as 
weight is taken off smoothly from the individual cases and transferred 
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Fig. 3 | Schematic view of dimension reduction in PCA. a, The rows of data, 
optionally standardized, and their mean, or centroid, C, define points in 
multidimensional space. b, The first two dimensions of the singular value 
decomposition identify the best-fitting two-dimensional plane in terms of least-
squared distances between the plane and the points. This plane contains C, which 
becomes the zero point, or origin, of the PCA display and represents the averages 

of the variables. c, Each multidimensional data point defines a right-angled 
triangle with its projection onto the plane and the centroid. The average sum 
of squared distances of the points to the centroid is equal to the total variance, 
which is fixed. The maximization of average squared distances in the plane 
(maximizing variance) is equivalent to minimizing the average squared distances 
from the points to the plane (minimizing fit).
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to the group means. The effect on predicting the tumour group for a 
hold-out test set is reported in ref. 16.

Sparsity constraints for wide data
The coefficients that define the principal components are generally 
all non-zero, or dense. For wide data, when the number of features is 
very high, in the hundreds or thousands, this presents a problem for 
interpreting so many coefficients. This is the case with the present 
cancer dataset as well as microbiome and omics data in general, where 
there can be thousands of variables compared with a small number of 
samples. The interpretation would be considerably simplified if some 
of the coefficients were zero, that is, if they were more sparse. Earlier 
attempts to partially solve this problem rotated the PCA solution so 
that variables aligned themselves closer to the dimensions38,39.

More recently, sparse PCA implementations40–46 handle this prob-
lem by introducing penalties on the coefficient sizes that force some 
coefficients down to zero, eliminating them from the interpretation of 
the respective principal components. For example, combined with the 
objective of explaining variance, the lasso penalty47 restricts the sum of 
the absolute values of the coefficients, similar to lasso regression. The 
result is a small sacrifice of the variance-explaining objective to shrink 
the absolute values of some coefficients to zero. An improvement that 
achieves coefficient sparsity can also be made using the elastic-net 
penalty48, which restricts both the sum of the absolute values of the 
coefficients and their sum of squares. For a recent comprehensive 
review of sparse PCA methods, see ref. 49. Sparse PCA is a fairly recent 
innovation, and is still actively debated in the literature50,51.

Figure 4c shows the effect of sparse PCA on the results of the Khan 
gene data shown in Fig. 4a. Most of the 2,308 genes have been elimi-
nated, leaving the remaining few with nonzero values either on PC1 
or PC2 (103 for PC1 and 84 for PC2), and a few nonzero for both PCs. 
The configuration of the samples and their averages in Fig. 4c is very 

similar to that in Fig. 4a. Within each cancer group there is a vertical 
separation of samples with positive PC2 and those with negative PC2, 
which is now accentuated. The genes that lie on the vertical axis will 
be the indicators of this separation. On the horizontal dimension, 
the genes with nonzero values will be related to the separation of the 
cancer groups, especially RM versus BL. To achieve this simplified inter-
pretation, 2.5 percentage points of the explained variance have been 
sacrificed, compared with Fig. 4a. In the sparse centroid PCA of Fig. 4d, 
the cancer groups are separated and the few genes with nonzero values 
(72 for PC1 and 79 for PC2) will be indicators of this separation. Notice 
that there is now a clear distinction between groups RM and EW, with 
lower within-group dispersions. In this case, the percentage of variance 
explained by these two sparse PCA dimensions has been reduced by  
4 percentage points compared with the regular PCA of the centroids 
in Fig. 4b.

Supplementary Video 3 shows an animation of the tumour samples 
in Fig. 4b transitioning to the sparse solution in Fig. 4d. The outlying 
genes in Fig. 4b, which contributed the most to the regular PCA solu-
tion, can be seen to be the ones that are not eliminated by shrinking to 
zero in the sparse solution.

Correspondence analysis
Correspondence analysis52,53 and its constrained version, canonical 
correspondence analysis54, are among the most popular techniques 
for visualizing abundance or presence/absence data in ecology, but 
are also extensively used in archaeology, linguistics and sociology. By 
‘constrained’, we mean that the dimensions of the solution are forced 
to be related, usually linearly, to external information, such as group-
ings or explanatory variables. Interest is then focused on reducing 
the dimensionality of the constrained variance rather than the total 
variance. The analysis of Fig. 4b is a constrained PCA, in which the con-
straint is defined by the cancer tumour groups and the between-group 
variance is of interest. Here, the constraining variables are the four 
dummy variables for the tumour groups.

A typical dataset is the Barents Sea fish data from ref. 55;  
600 samples were obtained over a period of 6 years, 1999–2004, each 
obtained by 15 minutes of trawling in the Barents Sea north of Norway; 
the numbers of up to 66 different fish species are counted in each 
sample. The sampling was performed at a similar time of year and at 
similar locations. Such datasets are typically very sparse, since only a 
few fish species are found in any single sample. In this dataset, 82.6% 
of the values in the 600 × 66 data matrix are zeros.

The data to be analysed by correspondence analysis are the profile 
vectors of relative frequencies in each row. If the original data matrix 
has entries nij, with row sums ni+, then the row profiles are the vectors 
of relative frequencies (proportions) rij = nij/ni+, j = 1,…, J. The interpoint 
distance function in the multidimensional profile space is the chi-
square distance (see Eq. 4), using a weighting of the squared differences 
between profile elements by the inverse of the average profile with 
elements cj = n+j/n, that is, the column sums n+j divided by the total n. 
The chi-square distance between two rows uses a standardization of 
the profile data, (nij/ni+)/ cj , followed by the usual Euclidean distance 
applied to these transformed values.

The final property that distinguishes correspondence analysis 
from PCA is that the points have weights proportional to their mar-
ginal frequencies; the row weights are ni+/n. Correspondence analysis 
also has the special property that it treats rows and columns sym-
metrically — it is equivalent to think of the relative frequencies column-
wise. The column profiles, which are the points to be approximated in 

Table 1 | Correlations of the five PCs with the five variables

PC1 PC2 PC3 PC4 PC5 Row 
sum of 
squares

Singular values

Singular 
values /√n

1.532 1.107 0.838 0.692 0.495 5

Correlations with variables

Social 0.825 −0.295 0.303 0.183 0.328 1

Life 0.862 −0.269 0.002 0.252 −0.347 1

Choices 0.764 0.285 0.178 −0.549 −0.050 1

Generosity −0.007 0.884 0.380 0.268 −0.038 1

Corruption −0.584 −0.451 0.659 −0.091 −0.114 1

Summary values

Column sum 
of squares

2.348 1.226 0.703 0.478 0.245 Row sum
5

Social, social support; Life, healthy life expectancy; Choices, freedom to make life choices; 
Generosity, generosity of the general population; Corruption, perceptions of internal and 
external corruption. The sum of squared correlations for each variable is 1. The sum of squared 
correlations for each principal component (PC) is the square of the first row (squared singular 
value divided by n, the number of cases) and is equal to the part of the variance explained by 
that PC, out of a total variance of 5. Expressed as percentages, these are the percentages on 
the PC dimensions. For example, on the first dimension, 100 × 2.348 ÷ 5 = 47.0%.
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multidimensional space, can be considered with their corresponding 
column weights and chi-square distances between column profiles. 
In other words, the data table can be transposed and identical results 
will be obtained. This property of symmetric treatment of rows and 
columns is shared by logratio analysis.

Similar to the genetic study of the child cancers, there is a specific 
objective in analysing the Barents Sea fish data: to see whether there is 
a temporal evolution of the relative fish abundances across the 6 years. 
This is achieved analytically by aggregating the fish abundances into 
a 6 × 66 matrix, where the rows are the 6 years and the counts are now 
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Fig. 4 | PCA of the child cancer data. a, Unsupervised principal component 
analysis (PCA) of the individual-level data. The four tumour groups — 
Burkitt lymphoma (BL), Ewing’s sarcoma (EW), neuroblastoma (NB) and 
rhabdomyosarcoma (RM) — are enclosed by convex hulls. 95% confidence 
ellipses are shown for the group means, which are located at the group label in 
larger font. The 2,308 genes are displayed as dots, where darker dots indicate 
higher contributions to the separation of individual tumours. b, Supervised PCA 
of the tumour data, explaining the between-group variance. The four tumour 
groups are again enclosed by convex hulls, with confidence ellipses for the 

group means that are now all separated. The darker dots now correspond to 
genes making higher contributions to the group separation. c, Sparse PCA of 
the tumour data, comparable to the regular PCA in panel a. Most of the 2,308 
genes are eliminated and the remaining genes are now identified with either the 
first or second PC, and in a few cases with both PCs. The percentage of explained 
variance has dropped from 28.5% in the panel a solution to 26.0%. d, Sparse 
PCA of group centroids; 72 and 79 genes have nonzero values on PC1 and PC2, 
respectively, and the percentage of explained variance has dropped from 75.6%  
in panel b to 71.6%.
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summed for each year. The constraint is achieved by the discrete vari-
able year, with six categories. So the correspondence analysis applied 
to this aggregated matrix is effectively a canonical correspondence 
analysis, shown in Fig. 5. As before, only the top contributing variables 
(fish species) are shown, 10 out of the total of 66. In addition, 95% 
confidence ellipses are shown for the year points. These are based on 
1,000 bootstrap resamplings of the coordinates of the 600 samples, 
followed by recomputing the year aggregations for each bootstrap 
sample and computing the ellipse for each year’s set of 1,000 points 
using the estimated bivariate normal distribution.

There appears to be a transition from 1999 on the left through to 
2004 on the right, with 1999’s confidence ellipse separated from the 
others. The biplot vectors of the species show the reason. Pa_bo (Pan-
dalus borealis, shrimp) is highest in 1999, while Me_ae (Melanogrammus 
aeglefinus, haddock) and Tr_es (Trisopterus esmarkii, Norway pout) 
are highest in 2004. These conclusions can be verified in the table 
of relative abundances. For example, the last two species, Me_ae and 
Tr_es, have percentages in 2004 of 2.3% and 0.7%, more than twice the 
next-highest relative abundances in the previous years. The difference 
between 1999 and 2000 appears to be due to Bo_sa (Boreogadus saida, 
polar cod), which has percentages highest (1.2%) in 1999 and lowest 
(0.06%) in 2000.

The presence of non-overlapping confidence ellipses suggests 
that the temporal differences are statistically significant. This can be 
confirmed by a permutation test56 that gives a P value of 0.003. This test 
computes the between-year variance in the constrained space of the 
data, which in this case is five-dimensional, one less than the number 
of years. Then, the year labels are randomly allocated to the original 
600 rows of data and the between-year variance is again computed. This 
random permutation of year labels is performed a total of 999 times. 
Assuming the null hypothesis of no difference between years, the 
obtained P value of 0.003 means that only two between-year variances 
based on random allocation were greater than the observed value. 

These two, plus the original observed value, gives 3 out of 1,000 in the 
tail of the permutation distribution, hence the P value.

Imposing external constraints
Figures 4b and 5 are examples of PCA and correspondence analysis con-
strained to the variance between groups of cases, which are cancer 
types in Fig. 4b and years in Fig. 5. Constraints can be made with respect 
to categorical variables as well as continuous variables, a strategy that 
is very common in ecological applications. The data matrix for the 
PCA (or correspondence analysis) is regarded as a set of response vari-
ables, for example biological variables, such as biomasses of different 
marine species, where the constraining variables are environmental 
variables regarded as explanatory, such as sea temperature and salin-
ity. Categorical variables, such as sampling year, are coded as dummy 
variables that also act as constraining variables. Other examples are 
morphometric measurements on different fish, or microbial com-
positions, as the multivariate responses and constraining variables 
could be fish diet55.

Rather than explain the total variance of the response dataset, the 
objective is to focus on the part of variance that is directly related to 
the explanatory variables. This is achieved by projecting the response 
dataset onto the space defined by the explanatory variables (called the 
constrained or restricted space), thereby eliminating the biological 
variance unrelated to the environmental variables. The search for prin-
cipal components is then performed in the constrained space, called 
redundancy analysis57–59. The result is in the form of a triplot, of cases 
and response variables as before, with the addition of vectors indicat-
ing the directions of continuous constraining explanatory variables or 
points showing the positions of categories of constraining categorical 
variables, as in Figs. 4b and 5. Canonical correspondence analysis is an 
analogous constrained method for response data such as frequency 
counts or presence–absence data and is one of the most widely used 
methods in quantitative ecology54,60,61.
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shown, as well as their 95% confidence ellipses. The 10 species (out of 66)  
that contribute more than average to this two-dimensional solution 
are shown. Only species abbreviations are shown, with the following 
common names: Pa_bo (shrimp), Bo_sa (polar cod), Tr_es (Norway pout),  
Cl_ha (herring), Me_ae (haddock), Ga_mo (cod), Hi_pl (long rough dab),  
Mi_po (blue whiting), Ma_vi (capelin) and Se_spp (redfish). The 600 individual 
sample points, which show great variation owing to the sparsity of the data, 
are not shown.
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Multiple correspondence analysis
A popular variant of correspondence analysis is multiple correspond-
ence analysis53,62, used for multivariate categorical data, often found 
in social surveys where respondents choose response categories in a 
series of questions63–65. The data are coded as zero–one dummy vari-
ables, where each question generates as many dummy variables as 
categories, and the categories chosen by each respondent are indi-
cated by ones in the corresponding columns. The resultant matrix is 
called an indicator matrix, with respondents as rows and categories 
as columns. Multiple correspondence analysis is the application of 
correspondence analysis to the indicator matrix, generating biplots 
of the respondents and categories. One advantage of this approach is 
that association patterns of single categories, such as ‘missing value’ 
or ‘no opinion’ categories, can be investigated66,67. In sociological appli-
cations it is generally the averages and dispersions of respondents for 
different demographic categories that are of interest in the multiple 
correspondence analysis results.

Mixed data
Variants or extensions of PCA have been developed for different data  
types and structures. The observed variables could be of different types, 
called mixed-scale data, which often involve both continuous and cat-
egorical data. The idea is to come up with a common coding scheme, 
for example categorizing the continuous variables into crisp catego-
ries (dummy variable coding, zero or one) or fuzzy categories (values 
between zero and one) so that all the variables are of a comparable 
categorical type68–71. A general strategy, called nonlinear multivariate 
analysis, is to quantify categorical variables so that the resulting prin-
cipal components explain as much as possible of the variance in the 
transformed variables72–74.

Another context related to fuzzy category coding occurs when 
the data are intervals of real numbers, for instance, the observation 
of a variable is its range of values. Interval data are used to represent 
uncertainty or variability in observed measurements, as would be 
the case with monthly interval temperatures at meteorological sta-
tions, or daily interval stock prices, for example. An interval-valued 
observation is represented by a hyper-rectangle, rather than a 
point, in a low-dimensional space. Extensions of PCA for interval-
valued data apply classical PCA to the centres or the vertices of the  
hyper-rectangles75–82.

Derivation of scales and indices
PCA has been used to derive composite indices or composite indicators 
in many disciplines, such as socioeconomics, public policy making, 
environmental and biological sciences83–86. A composite indicator is 
formed when individual indicators are compiled into a single index. 
For example, to investigate public opinion on government measures 
aimed at reducing carbon dioxide, a survey could be executed that 
asks participants to answer a series of questions related to this topic, 
each answered on an ordinal rating scale. Often, the composite score 
is taken as the sum of all answers, giving an approximation of partic-
ipants’ opinion on the government measures. However, this raises 
questions about whether taking the direct sum is appropriate, and 
if all questions measure the same concept. PCA can be used as a first 
exploration. A single large eigenvalue is a strong indication that there is 
a single dominant scale. Two or more large eigenvalues are indications 
of the presence of multiple concepts, meaning more than one compos-
ite indicator. PCA can be helpful in the exploration of such composite  
indicators, but confirmatory factor analysis is recommended for the 

validation of such composite scales87. Multiple correspondence analysis 
has also been used to construct indices based on categorical data88,89, 
since the method assigns quantitative values to categories to maximize 
explained variance, and these summed quantifications then constitute 
new scales90.

Reproducibility and data deposition
Minimal reporting
The results of a PCA are generally reported in the form of a two-
dimensional biplot, where the unspoken assumption is that this is an 
adequate explanation of the dataset. Percentages of variance should 
be reported for each dimension. Adequate does not necessarily mean 
that the percentages explained by the two dimensions should be high. 
As in regression analysis, there can be a lot of noise in the data, and low 
percentages of variance in the leading dimensions might still reflect 
the only signal contained in the data.

When there are very many cases, it is often not necessary to display 
them all. When the cases fall into groups, showing the group means and 
their possible confidence regions is usually sufficient, as in Fig. 5. For 
datasets with many variables, less attention needs to be paid to vari-
ables that make low contributions to the solution, as in Fig. 4a and b,  
or in Fig. 5, where the low contributors are de-emphasized or omitted. 
To avoid distortion, there should be an aspect ratio of 1 in such a plot, 
since its interpretation is in terms of distances and perpendicular 
projections.

R and Python implementations
PCA is widely implemented in commercial and open-source statistical 
packages. In the R language, there are a large number of implemen-
tations of the PCA algorithm and its several variants. An exhaustive 
list of the R packages and Python libraries or PCA is beyond the scope 
of this Primer. Table 2 shows the packages and functions that can be 
used to implement the methods described in this Primer. Base R func-
tions, sometimes requiring more code, give all the flexibility needed 
for producing publication quality results.

Limitations and optimizations
PCA for large datasets
When PCA is used to visualize and explore data, there are practical 
limitations to the data size and dimensionality that can be handled. 
In several applications of PCA, such as image classification91, image 
compression92, face recognition93,94, industrial process modelling95, 
quantitative finance96, neuroscience97, genetics and genomics98–101,  
to name a few, the size and the dimensionality of the datasets can be 
very large, leading to computational issues. At the core of PCA is the 
EVD of the covariance or correlation matrix, or the SVD of the cen-
tred, possibly standardized, data matrix (see Box 1). Both these matrix 
decompositions are computationally expensive for very large matrices 
and require the whole data matrix to fit into memory.

The computations for large-scale EVD and SVD can be enhanced 
in several ways, where a distinction can be made between batch (or 
offline) and incremental (or online) approaches. Most batch-enhanced 
matrix-decomposition methods rely on interest usually being focused 
on the first few eigenvalues or singular values, and the corresponding 
eigenvectors or singular vectors; that is, a truncated EVD or SVD. The 
goal of the power method is to find the largest eigenvalue and associ-
ated eigenvector102, and the Lanczos algorithm is an adaptation to find 
the leading eigenvalues and vectors103. Some of the most enhanced 
batch EVD methods are variations of the Lanczos algorithm104,105.  
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An alternative probabilistic approach leads to approximate yet accurate 
matrix decompositions106.

Batch methods lead to a substantial reduction of the computa-
tional cost, but do not solve cases where the matrix cannot be stored 
in memory, or when new data are constantly produced as data flows. 
The general aim of online matrix decomposition methods is to incre-
mentally update an existing EVD or SVD as more data arrive. Several 
approaches have been proposed in the literature107–111. An incremental 
approach to SVD and PCA is best suited when the number of variables is 
much greater than the number of observations (p ≫ n), and new obser-
vations become available. Examples are market basket data112 and data 
from recommender systems on e-commerce websites113. An example of 
the continuous arrival of image data is surveillance cameras114–117, where 
each image is coded as a single vector, with p given by the number of 
pixels of that image. If nothing happens, the background corresponds 
to low-variance singular vectors, whereas any disturbance or intruder, 
however small, creates a big change.

Missing values using SVD
PCA can be extended to the case when data are partially observed. For 
example, suppose that 10% of the 149 × 5 = 745 entries in the World Hap-
piness Report dataset were corrupted and, as a result, are indicated as 
missing. An intuitive way to deal with this situation would be to remove 
all the rows containing missing observations and perform PCA on 
the fully observed samples only. Although convenient, this approach 
would be very wasteful. In the worst-case scenario, as many as 50% of the  
149 samples would be removed. As an alternative, missing values could be 
replaced by the mean of the corresponding column. For example, missing 
values for the variable Life would be replaced by the average value for all 
the countries/territories with observed values. Although widely applied 
in practice, this approach ignores correlation between the variables.

To explain the goal of PCA with missing values, the standard PCA is 
linked to the low-rank matrix approximation problem. In what follows, 
it is assumed that X is a matrix with missing values, which has been pre-
centred and pre-scaled using the observed values. Finding the first r 

Table 2 | Packages and functions implementing PCA and its variants

Package Function Description

R packages

stats prcomp, princomp These base R functions have minimal output and sometimes conflicting terminology.

base svd Singular value decomposition of a matrix.

FactoMineR140 PCA The FactoMineR, ade4, amap, easyCODA and PCAtools packages all have options for weighting rows and 
columns of the data matrix. Options for supplementary rows and supplementary columns are provided in 
PCA (FactoMinerR) and dudi.pca (ade4). Note that PCA (easyCODA) has supplementary rows only. The 
FactoMineR, ade4 and easyCODA packages have extensive results in the created objects. The easyCODA 
package is aimed at compositional data analysis but has functions for PCA, correspondence analysis, LRA 
and RDA. Most of these packages have dedicated plotting functions (in the case of the ade4 package there 
is a separate package adegraphics141).

ade4142 dudi.pca

amap acp

easyCODA21 PCA

PCAtools pca

pca3d pca3d Three-dimensional PCA graphics.

vegan rda This function computes RDA, that is, PCA with constraints, but can also perform PCA with no constraints. 
The same package has function cca for correspondence analysis with or without constraints.

elasticnet spca Implementations of sparse PCA using a lasso penalized least-squares approach to obtain sparsity. 
arrayspc is specifically designed for the case p ≫ n, such as microarrays.arrayspc

irlba prcomp_irlba These fast and memory-efficient functions (prcomp_irlba, svds, rpca, batchpcs and i_pca) are used when 
the data are too large to fit into memory, or are arriving in streams.RSpectra svds

rsvd143 rpca

onlinePCA batchpca

idm144 i_pca

symbolicDA PCA.centers.SDA PCA for interval-valued data.
RSDA sym.pca

fdapace FDA PCA of functional data, where data are sparse and longitudinal.

softImpute softImpute Imputation of missing values for PCA or matrix completion; can handle very large and sparse matrices.

missMDA145 imputePCA Imputation of missing values for PCA.

Python libraries

scikit-learn146 sklearn. decomposition. 
PCA

PCA, also with truncated SVD for large datasets.

sklearn. decomposition. 
SparsePCA

Sparse PCA using the lasso penalty.

sklearn. decomposition. 
IncrementalPCA

Computes solution by processing data in chunks, when dataset is too large to fit into memory.

NumPy147 linalg.svd SVD of a matrix.

LRA, logratio analysis; PCA, principal component analysis; RDA, redundancy analysis; SVD, singular value decomposition.

https://www.R-project.org/
https://CRAN.R-project.org/package=amap
https://github.com/kevinblighe/PCAtools
https://CRAN.R-project.org/package=pca3d
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=elasticnet
https://CRAN.R-project.org/package=irlba
https://CRAN.R-project.org/package=RSpectra
https://CRAN.R-project.org/package=onlinePCA
https://CRAN.R-project.org/package=symbolicDA
https://CRAN.R-project.org/package=RSDA
https://CRAN.R-project.org/package=fdapace
https://CRAN.R-project.org/package=softImpute
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principal components is equivalent to searching for the matrix X of 
rank r, denoted by Xr, that minimizes the residual sum-of-squares (RSS) 
to the original data matrix. For fully observed data, RSS is measured 
for all matrix elements, but when some data values are missing, RSS is 
measured between the data and Xr using the observed values only. In 
this case no explicit solution exists, but the problem can be solved using 
a simple iterative algorithm, detailed in Box 2. An example is given in 
the online R script of simulating 10% missing data, and the results are 
quite consistent with those using the complete dataset.

Matrix completion
The previous section describes an algorithm to make PCA work on a data 
matrix with missing data. Attention was not focused on the values used 
to replace the missing ones. However, in other contexts, the replaced or 

imputed values are of principal interest. A well known recent example 
is the Netflix competition113, in which a huge dataset of 480,189 custom-
ers and 17,770 movie titles was supplied to contestants: see a small 
part of the dataset in Fig. 6a. On average, each customer rated about 
200 movies, meaning that only 1% of the matrix was observed. The 
task is to predict the gaps in the data, the users’ ratings of movies they 
have not seen, based on the ratings supplied, and those of other users 
similar to them. These predictions would then be used to recommend 
movies to customers. Such recommender systems are widely used in 
online shopping and other e-commerce systems.

A low-rank matrix approximation of the PCA type is a natural solution 
to such a problem (Fig. 6b): ≈M CGT. Movies can be considered as belong-
ing to r genres — for example, thrillers, romance and more — represented 
as the rows of the red matrix, while users belong to r cliques — such as 
those who like thrillers, those who like romance and so on — which are 
the columns of the green matrix. This translates into a matrix approxima-
tion �M of rank r, and the general element of the low-rank approximation 
M CG� = T is m c g= ∑ij k

r
ik jk=1� , where the cliques and the genres are com-

bined. As a result, the more a customer is in a clique that favours a certain 
genre, the higher the predicted rating mij�  will be. The objective is then to 
minimize the RSS, m m∑( − )ij ij

2� , which optimizes the fit of the mij�  to the 
mij by least squares, over the observed values in M only. The form of  
the matrix product CGT is the same as the SVD of low rank (see Box 1), 
where the singular values have been absorbed into either the left or right 
singular vectors, or partially into both.

The successive filling-in algorithm for missing data described 
in Box 2 would be infeasible for this massive imputation task. But the 
basic algorithm can be significantly enhanced by introducing several 
computational tricks into what is called the HardImpute algorithm118. 
One trick involves solving the SVD problem, with filled-in values in M, 
in alternating stages by fixing the genre matrix G, optimizing the fit 
with respect to C, then fixing the clique matrix C and optimizing with 
respect to G. Another trick is to store only the observed elements of the  
matrix M, which are very few in the Netflix example compared with 
the elements of the whole matrix, in sparse format and adapting the 
computations to this format. The basic algorithm has a further adap-
tation, called the SoftImpute algorithm118, which applies a shrinkage 
penalty to the singular values; some become zero in the process and 
this determines the rank of the solution.

The SoftImpute algorithm is described more fully in refs. 118–121  
and has been demonstrated to give improved performance over 
HardImpute in many applications, see refs. 122,123. For the massive Netflix 
example, Fig. 6c shows how SoftImpute improves over HardImpute. 
HardImpute starts to overfit at a fairly low-rank solution, while the 
singular-value shrinkage in SoftImpute delays the overfitting and allows 
it to find signal in many more dimensions.

Outlook
PCA has been, and will remain, the workhorse of exploratory data 
analysis and unsupervised machine learning, while also being at the 
heart of many real-life research problems. The future of PCA is its 
increasing application to a wide range of problems and sometimes 
unexpected areas of research. This section mentions some recent 
innovations in which PCA and its core algorithm, the SVD, play an 
important part, especially in the analysis of very large challenging 
datasets from genetics, ecology, linguistics, business, finance and 
signal processing. Some of these have already been described, such 
as sparse PCA and matrix completion. Images, physical objects, 
and functions are non-standard data objects, to which PCA can be 

Box 2

Iterative algorithm for PCA with 
missing values
Step 1: initialization for rank r = 0
(a)	Set X0 = 0.
(b)	Replace the missing values in X by the corresponding values in X0.
(c)	Compute residual sum-of-squares (RSS) between completed X 

and X0 and denote it by RSS0.

Step 2: find solutions for ranks r = 1, 2, …, p in a sequential way
(a)	Iterate the following steps until convergence: 

(i)	 Compute the first r principal components of completed X, 
obtaining the rank r approximation Xr from the singular value 
decomposition as follows:

X u vαr
k

r

k k k
1

T∑=
=

(ii)	Replace the missing values in X by the corresponding values 
in Xr.

(b)	At convergence, compute RSS between completed X and Xr 
and denote it by RSSr. The proportion of variance explained by 
component r can be measured by (RSSr–1 – RSSr)/RSS0.

Step 3: the proportions of variances explained by each component 
define the scree plot
Use it to choose a rank r* for the final solution. Return the sample 
principal coordinates αkuk and the variable standard coordinates vk 
for k = 1, 2, …, r* that form the decomposition of Xr*.

Notes
•• Because of the pre-centring, steps 1(a) and (b) amount to 
imputation with column means of the observed data.

•• When proceeding from rank r to r + 1 in step 2, the completed 
data matrix X carries the filled-in values from Xr.

•• Measuring RSS between completed X and Xr is equivalent to 
measuring RSS using the observed values only.

PCA, principal component analysis.



Nature Reviews Methods Primers |            (2022) 2:100 15

Primer

My O
cto

pus T
eacher

The Kingfish
er C

aper

Invictu
s

Ts
otsi

Catching Feelin
gs

Mandela

Skin
Esc

ape fr
om Pre

to
ria

Dist
ric

t 9

Angelie
na

Customer 1 • • • • 4 • • • • •

 2 • • 3 • • • 3 • • 3

 3 • 2 • 4 • • • • 2 •

 4 3 • • • • • • • • •

 5 5 •5 • 4 • •

4

• • •

 6 • • • • • 2 • • •

 7 • • 5 • • • • 3 • •

 8 • • • • • 2 • • • 3

 9

 10

3 • • • 5 • • 5 • •

• • • • • • • • • •

≈

C
us

to
m

er
s

Movies

C
liq

ue
s

Genres

0 50 100 150 200

0.95

0.96

0.97

0.98

0.99

1.00

c  Netflix test error

b

a

Rank

R
M

SE

−

HardImpute
SoftImpute
Cinematch

Fig. 6 | Movie recommender system via matrix completion.  
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applied after using clever ways of coding the data in the form of a  
data matrix.

PCA of images
Often the observations represented by PCA can be rendered in a recog-
nizable form, such as images. Such images could be birds from closely 
related species, human faces or retinal scans taken during routine eye 
exams. An example dataset contains 652 handwritten versions of the 
number four, scanned from the zip codes on letters posted in New 
York. Each is represented by a 16 × 16 greyscale image (see the grid in 
Fig. 7Aa, with pixel values ranging from −1 to +1). Each image of a four 
can then be coded as a single vector of length 256, defining a point in 
a 256-dimensional space. Consequently, the data matrix in Fig. 7Ab is 
652 × 256. Figure 7Ac shows a plot of the first two principal component 
scores for these data, where some emblematic examples of the points to 
interpret the configuration have been added. These examples include 
two images each that project to the extremes of PC1 and PC2, and two 
that project near the middle. Their images are included in the plot, to 
illustrate what components of variation the axes explain. The PC1 axis 
seems to differentiate fours with stubby tails (negative side) versus long 
tails (positive side). The PC2 axis (positive side) has fours with stubby 
upturns in the left part of their horizontal arms, and long right arms, 
contrasted with the opposite pattern on the negative side.

PCA of shapes
A special case of images is that of shapes. Here, an example is presented 
from morphometrics, the study of shape, looking at 126 mosquito wings. 
The plot in Fig. 7Ba shows one mosquito wing, with 100 landmarks indi-
cated along the edge of a wing124. Each wing is represented by 100 pairs 
of (x,y) coordinates, with 200 numbers in total. The data matrix for 
the 126 mosquito species studied is a 126 × 200 matrix of coordinates 
(Fig. 7Bb), in which the wings were previously rotated while being 
anchored at the joint part of the wing. This fitting-together of shapes is 
achieved by Procrustes analysis, another multivariate method that relies 
on the singular value decomposition125,126. PCA is used to understand the 
shape variation of the wings. Fig. 7Bc shows the positions of the wings in 
a two-dimensional PCA plot, with some samples labelled at the extremes 
of the two PC axes. The first principal component PC1 explains 67.2% of 
the variance, and the plot in Fig. 7Bd shows all the wings in grey, the mean 
wing shape in black and then the two extreme wings on PC1 coloured the 
same as the dots in Fig. 7Bc. Fig. 7Be is a similar plot for PC2. It seems that 
PC1 has something to do with the shape of the wing, while for PC2 the 
wings are more or less the same shape but different in length.

PCA of functions
Functional data are observed as smooth curves or functions. In func-
tional PCA, continuous eigenfunctions rather than eigenvectors are 
associated with the major eigenvalues. Since early work in functional 
PCA127,128, there have been several developments129–134. Suppose that 

each data feature corresponds to a value of some function evaluated 
at different points of continuous time. The context presented here is 
the measurement of the angles of knee flexion, shown in Fig. 7Ca, for a 
set of 1,000 patients during a gait cycle, the period between successive 
foot contacts of the same leg. The variables are the successive values 
of each subject’s gait curve evaluated at 100 evenly spaced times along 
their complete gait cycle. A patient’s set of measurements is stored in 
a row of a 1,000 × 100 matrix, and all the functions are represented 
as a set of curves in Fig. 7Cb, with the mean curve represented by the 
thicker black curve. Some emblematic curves are coloured and will be 
referred to in the next figure, Fig. 7Cc.

In the usual PCA of a matrix of p variables, the axes form a basis in 
the p-dimensional space and each vector of p observations is approxi-
mated in two dimensions, for instance by the mean vector, the centre 
of the PCA plot, plus a linear combination of the first two eigenvectors 
v1 and v2. In the case of functional data, the principal component direc-
tions are curves. Now, each observed curve is approximated by the mean 
curve plus linear combinations of the two principal component curves. 
Fig. 7Cc shows the PCA plot of the 1,000 curves. By studying the shapes 
of the curves labelled as extreme points in this plot, an interpretation of 
what the dimensions are capturing can be suggested. The two principal 
component curves, shown in Fig. 7Cd with the same horizontal scale as 
Fig. 7Cb, give a more direct interpretation, where it should be remem-
bered that these explain the deviations from the mean curve. The two 
points close to the centre in Fig. 7Cc have curves similar to the mean 
curve in Fig. 7Cb. It can be deduced that PC1 is mostly a size component, 
in the form of an almost constant vertical knee shift, and PC2 is a shape 
component in the form of a differential phase shift. Looking back at the 
emblematic samples in Fig. 7Cb and Cc confirms this interpretation.

The two principal component curves shown in Fig. 7Cd are the 
principal component direction vectors, plotted against percentage 
time in the gait cycle. They are smooth because the original data curves 
are smooth. Sometimes the function data are noisy, but smooth prin-
cipal component curves are preferred for the solution. In this case, it 
could be insisted that any solution curve be a linear combination of 
a small set of smooth functions in the columns of a matrix S. These 
smooth functions can be a basis for polynomials, sines and cosines, 
or splines, which are simple polynomial functions joined together 
smoothly to give more flexible curves. In addition, if the columns of S 
are orthonormal, which can be assumed without loss of generality, then 
the solution for the coefficients that combine the smooth functions can 
be conveniently obtained from the PCA of the matrix XS, where, in this 
application, X is the original 1,000 × 100 data matrix128,135.

PCA unlimited
There are many other innovative uses of PCA in the literature, which 
take PCA into all sorts of interesting and completely different direc-
tions, of which these are only a few examples. The art is in coding the 
appropriate variables, or features, prior to the application of PCA.

Fig. 7 | PCA of visualizable objects: images, shapes and functions. A, Principal 
component analysis (PCA) of images. Aa, 16 × 6 grid on one of 662 handwritten 
fours, for coding the greyscale image for the 256 cells. Ab, Resultant 652 × 256 data 
matrix for all the fours. Ac, PCA plot of the 662 samples, showing some selected 
images. B, PCA of shapes. Ba, 100 landmarks, each with an x- and y-coordinate, 
shown on 1 of 126 mosquito wings, giving 200 values for each wing. Bb, The result-
ant 126 × 200 data matrix of coordinates. Bc, The PCA of the 126 wings, with some 
emblematic ones labelled on the extremes of the two dimensions, PC1 and PC2.  

Bd, All the wing shapes, showing the mean wing shape and the shapes of the two 
wings on the extremes of PC1. Be, As for PC1 but now showing the mean wing 
shape and the shapes of the two wings on the extremes of PC2. C, PCA of functions. 
Ca, Angle measurement of the knee. Cb, 1,000 knee flexion curves, showing the mean 
curve as the thicker black curve in the middle and some other selected ones, which are 
both similar and different from the mean. Cc, The PCA plot of the 1,000 curves, show-
ing the positions of the ones highlighted in panel Cb. Cd, The first (red) and second 
(blue) principal component functions. Data in panel C are taken from ref. 148.
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Several studies use PCA to understand the structure of songs 
of humpback whales. For example, single song sessions by several 
whales are broken down into themes, then into phrases and finally 
into units. The units are then coded for various acoustic features based 
on the sound spectrogram, such as various harmonics and ampli-
tudes136. PCA is applied to classify the songs and see their similarities 
in terms of times of day and locations. In another study PCA is used 
to derive a complexity score based on patterns of the song, such as 
song length, number of units, number of unique units and average  
phrase length137.

To understand the movement patterns of mice138, continuous 
three-dimensional imaging data were subjected to wavelet decom-
position and then analysed by PCA. This transformed the data into 
continuous trajectories through PC space. The first ten PCs, explaining 
88% of the variance, were used to build models of the three-dimensional 
behaviour of mice.

The article in ref. 139 treats the problem of reconstructing images 
of three-dimensional molecules, using single-particle imaging by X-ray 
free electron lasers. This paper deals with several methodological 
aspects of PCA discussed and used in this Primer: alternative ways of 

Glossary

Active variables
Variables used to construct the 
principal component analysis solution.

Biplot
Joint representation in principal 
component analysis of the sampling 
units (usually the rows of the data matrix) 
represented as points in a scatterplot, 
often using the principal components as 
coordinates and variables (the columns) 
obtained from the right singular vectors 
shown as arrows.

Biplot axis
Axis in the direction of the variable 
arrow in a biplot.

Bootstrap
Process aimed at assessing the 
statistical variability of a solution 
by repeatedly creating a bootstrap 
dataset derived from the original 
dataset through sampling the cases 
with replacement and computing the 
solution each time.

Covariance matrix
Matrix containing the covariances 
between all pairs of variables.

Dense
In the context of a data matrix, the 
presence of very few or no zeros;  
in the context of principal component 
analysis, the presence of no zeros in the 
principal component coefficients.

Eigenvalue
In principal component analysis, a value 
indicating the accounted variance by a 
principal component.

Eigenvalue decomposition
Reconstruction of any square and 
symmetric matrix through a sum of 
rank-one matrices of the outer product 
of an eigenvector with itself (vvT) times 
the corresponding eigenvalue.

Eigenvector
In principal component analysis, this 
provides the linear combination for a 
principal component.

Euclidean distance
The measure of distance between two 
points defined as the length, in the 
physical sense, of the shortest straight 
line connecting these points.

Least-squares matrix 
approximation
Approximation of a data matrix 
such that the sum over all squared 
differences is minimized, between 
values in the data matrix and the 
corresponding approximated values.

Linear combination
For a set of variables, a sum of scalar 
coefficients times the variables.

Low-rank matrix 
approximation
Approximation of a matrix by one of 
lower rank.

Nonlinear multivariate 
analysis
General strategy that optimally assigns 
numerical values to the categories of a 
categorical variable and, in the context 
of principal component analysis, 
this strategy helps to increase the 
variance accounted for by the principal 
components.

Passive variables
Variables that are not used to determine 
the principal component analysis 
solution and are fitted into the solution 
afterwards, also called supplementary 
variables.

Permutation test
General computational method that 
compares a statistic of observed data 
with the distribution of the statistic 
simulated many times using data with 
the values randomly permuted under a 
certain null hypothesis.

Principal axis
The same as a dimension in principal 
component analysis and equivalent to 
the direction corresponding to maximal 
variance projections of the sampling 
units and uncorrelated to other 
principal axes.

Principal coordinates
The coordinates of the sampling 
units or variables on a dimension that 
have average sum of squares equal 
to the variance accounted for by that 
dimension.

Regressed
In the context of principal component 
analysis, using multiple regression to 
predict a variable from the principal 
components.

Scree plot
Plot of eigenvalue by dimension 
often used for selecting the number 
of principal component analysis 
dimensions by those above the straight 
line (scree) that goes approximately 
through the higher dimensions.

Shrinkage penalty
The addition to the objective function 
of an additional objective to reduce 
the absolute value of certain quantities 
being estimated; for example, the 
singular values in matrix completion, or 
the principal component coefficients in 
sparse principal component analysis.

Singular value
In principal component analysis, the 
square root of the variance accounted 
for by a principal component.

Singular value decomposition
Reconstruction of any matrix by the 
weighted sum of rank-one matrices 
consisting of the outer product of the 
left and right singular vectors (uvT) 
multiplied by their corresponding 
positive singular value.

Singular vectors
In principal component analysis 
(PCA), the vectors of the singular value 
decomposition that lead to the row and 
column coordinates in a PCA biplot.

Sparsity
In the context of a data matrix, the 
presence of many zeros; in the context 
of principal component analysis, the 
presence of many zeros in the principal 
component coefficients.

Standard coordinates
Coordinates in a principal component 
analysis that are standardized to have 
the average sum of squares equal to 1.



Nature Reviews Methods Primers |            (2022) 2:100 19

Primer

standardization for balancing out the contributions of the image fea-
tures, using the error standard deviation rather than the usual overall 
standard deviation; the weighting of features; and using shrinkage to 
determine the number of PCA dimensions.

Concluding remarks
PCA was one of the first multivariate analysis techniques to be proposed 
in the literature, and has since become an important and universally 
used tool for understanding and exploring data. This Primer has pre-
sented several applications in diverse disciplines, showing how this 
simple and versatile method can extract essential information from 
complex, multivariate datasets. Recent developments and adaptations 
of PCA have expanded its applicability to large datasets of many differ-
ent types. More innovations arising from this quintessential statistical 
method are likely, meaning that PCA, along with its many variants and 
extensions, will remain one of the cornerstones of data science.

Code availability
Several datasets and the R scripts that produce certain results 
in this Primer can be found on GitHub at: https://github.com/ 
michaelgreenacre/PCA.

Published online: xx xx xxxx
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