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context

e quick intro: what does this relate to
(fMRI, vision, objects, ...) ?

 what's the proposal here
(3 distinct ideas)

* IS any of this relevant to other domains
(discussion)



Background

O @® @ Natural Scenes Dataset X + .

< C 25 https://naturalscenesdataset.org % S} 8

T —o Pl gL --»r{'m'm‘m'f WG
The Notural Scenes Dataset (NSD)

e NSD data set

v’x g.,. * eight participants x
| s S e gl e 9K unique images +
9 0006 v P o 5-' . 1k shared images =

CENTER FOR MAGNETIC RESONANCE RESEARCH UNWERSITY OF MINNESOTA

,L‘J R . N Ty s @-H 73k images

News:

e March 11, 2025 - The NSD synthetic data (one additional 7T fMRI scan session) have now been publicly
released.

o April 2, 2024: Take the NSD / large-scale neuroimaging dataset anonymous survey! Deadline May 15, 2024.

e January 16, 2023: Announcing that NSD data are used as part of the 2023 Algonauts Challenge!

e January 13, 2023: A list of papers and pre-prints using NSD data added below.

e December 16, 2021: The NSD data paper is now published.

e September 3, 2021: The NSD dataset is now publicly available.

The Natural Scenes Dataset (NSD) is a large-scale fMRI dataset conducted at ultra-high-field (7T) strength at the Center of

NNMNacnatir Racnnanrcrae Racanarcrh (CAMPR) af tha TTnivarcityr nf Minnacnta Tha datacat ~rAancicte nf vy hnalae kira1n hicoh racaliifiAan



subjects Iin 7T scanner

Task: “Have you seen b
this image before?”
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lots of data per participant

Resting-state




lots of data per participant
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lots of data per participant
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what was the brain
Task: “Have you seen response to this
this image before? stimulus: giraffe , Blank trials
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enter: the GLM

y = X5 +e
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enter: the GLM

y = X5 +e
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data = linear
combination of effects

explanatory

explanatory variable 2
variable 1 l

DA

other explanatory
variables

U1 [0.72 1
Yo 0.90 1
, Y3 0.65 1
Measure B
data | = 1020 pr+ [1]| p2 +
0.01 1
Yn




(GGeneral Linear Model

usually the case In

Nx1 vector NxL matrix Lx1 vector fMRI experiments:
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N: number of time points in the time series
L: number of regressors in the design matrix
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How to solve for p?

Unlikely to find exact
solution, because we

y — Xp have more equations than
unknowns.

... Where popt are the
(best) parameter

_ X #
Popt — X Yy estimates and # means

pseudoinverse.
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... Where popt are the
(best) parameter
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(GGeneral Linear Model
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N: number of time points in the time series
L: number of regressors in the design matrix



(GGeneral Linear Model

Nx1 vector NxL matrix Lx1 vector
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(GGeneral Linear Model

Nx1 vector NxL matrix Lx1 vector
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N: number of time points in the time series
L: number of regressors in the design matrix
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equations
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(GGeneral Linear Model

Nx1 vector

NxL matrix

Lx1 vector
L
i /7~ unknowns
e
[
PL

N: number of time points in the time series
L: number of regressors in the design matrix



Multiple parameters

... Where y, p are vectors
and X is the known matrix.
and [*]T is transpose and
[¢]1 Is the matrix inverse.



Multiple parameters

... Where y, p are vectors
and X is the known matrix.
and [*]T is transpose and
[¢]1 Is the matrix inverse.



Multiple parameters

projection matrix

... Where y, p are vectors
and X is the known matrix.
and [*]T is transpose and
[¢]1 Is the matrix inverse.



Multiple parameters

projection matrix pseudoinverse (X)

... Where y, p are vectors : "
and X is the known matrix. >> p = pinv(X)*y
and [*]T is transpose and
[¢]1 Is the matrix inverse.

>> p =X \Yy



Multiple parameters

In matlab, this

iacti ; seudoinverse (X) [l
projection matrix P (X) the hood...

... Where y, p are vectors
and X is the known matrix.
and [*]T is transpose and
[¢]1 Is the matrix inverse.

>> p = pinv(X)*y
>> p =X \Yy



Multiple parameters

In matlab, this

oy ; seudoinverse (X) TS A,
projection matrix P (X) the hood...

... Where y, p are vectors
and X is the known matrix.
and [+]" is transpose and
[*]1 is the matrix inverse.

>> p = pinv(X)*y

should give

_ same answer, but
>> p =X \Yy uses different

method (QR)
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fMRI response

(@rbitrary units)

haemodynamic
response function




haemodynamic
response function faEs

obverved data
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fMRI response
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shape usually
1 Y O=O—O— O assumed (“SPM”,
- “Glover”) - but it
0 4 8 12 16 20 24 varies!




o don’t assume: find the best

Response
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Time (TRs)
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re-run model on
data with one of 20
choices...

pick the one that
maximises
r2
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Library of HRFs
identify optimal HRF HRF
at each voxel

indices

N
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©® try to remove noise (PCA)

e treat all events as one (ON)... this leads to an ON-
OFF design

e find voxels that have a low r2 ... this becomes a noise noise pool
pool i

* use PCA on the noise pool voxels to find common
noise “time courses” (and include them in your model
as nuisance regressors)




©® try to remove noise (PCA)

e treat all events as one (ON)... this leads to an ON-

OFF design
e find voxels that have a low r2 ... this becomes a noise noise pool
pool

* use PCA on the noise pool voxels to find common
noise “time courses” (and include them in your mgdel

as nuisance regressors) h_hﬁw many / :
wnich components

to include?

cross-validation
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deal with correlated
regressors

® Make sure the design matrix makes sense!
¢ /s XTX always invertible? If not, why not?

e \Vhat is the interpretation for the values
corresponding to each element of popt? IS the
meaning of each value independent of the other
elements?

(XTX)"



what’s the problem?

* when two regressors can explain similar
parts of the data, then the problem is ill-
posed

* noise can make estimates jump around a lot

* solution: regularise the weights

(this means picking a set that fulfils certain

constraints - punish large beta weights Custom regularization
at each voxel




what’s the problem?

* when two regressors can explain similar
parts of the data, then the problem is ill-
posed

* noise can make estimates jump around a lot

* solution: regularise the weights

(this means picking a set that fulfils certain
constraints - punish large beta weights

custom regularization
ridge regression: at eaCh VOXG'

L2 horm




reliability goes up

A

Mean difference in voxel r
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Beta versions

b1: AssumeHRF

b3: FitHRF +
GLMdenoise

b4: FitHRF +
GLMdenoise +
Ridge Regression

AssumeHRF +
Ridge Regression

FitHRF +
Ridge Regression




Discussion points

 do people analyse their timeseries data in similar ways
(eye tracking? physiological data? EEG / event-related..)

» ONOFF idea - for a noise pool / data driven data cleaning?

* regularisation? ridge regression / LASSO, etc.



