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Abstract Advances in artificial intelligence have inspired a paradigm shift in human neurosci-
ence, yielding large- scale functional magnetic resonance imaging (fMRI) datasets that provide 
high- resolution brain responses to thousands of naturalistic visual stimuli. Because such experiments 
necessarily involve brief stimulus durations and few repetitions of each stimulus, achieving sufficient 
signal- to- noise ratio can be a major challenge. We address this challenge by introducing GLMsingle, 
a scalable, user- friendly toolbox available in MATLAB and Python that enables accurate estimation 
of single- trial fMRI responses (glmsingle.org). Requiring only fMRI time- series data and a design 
matrix as inputs, GLMsingle integrates three techniques for improving the accuracy of trial- wise 
general linear model (GLM) beta estimates. First, for each voxel, a custom hemodynamic response 
function (HRF) is identified from a library of candidate functions. Second, cross- validation is used 
to derive a set of noise regressors from voxels unrelated to the experiment. Third, to improve the 
stability of beta estimates for closely spaced trials, betas are regularized on a voxel- wise basis using 
ridge regression. Applying GLMsingle to the Natural Scenes Dataset and BOLD5000, we find that 
GLMsingle substantially improves the reliability of beta estimates across visually- responsive cortex 
in all subjects. Comparable improvements in reliability are also observed in a smaller- scale auditory 
dataset from the StudyForrest experiment. These improvements translate into tangible benefits 
for higher- level analyses relevant to systems and cognitive neuroscience. We demonstrate that 
GLMsingle: (i) helps decorrelate response estimates between trials nearby in time; (ii) enhances 
representational similarity between subjects within and across datasets; and (iii) boosts one- versus- 
many decoding of visual stimuli. GLMsingle is a publicly available tool that can significantly improve 
the quality of past, present, and future neuroimaging datasets sampling brain activity across many 
experimental conditions.
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context

• quick intro: what does this relate to  
(fMRI, vision, objects, …) ?


• what’s the proposal here  
(3 distinct ideas)


• is any of this relevant to other domains  
(discussion)



Background

• NSD data set


• eight participants × 
9k unique images + 
1k shared images = 
73k images



subjects in 7T scannerRESOURCE NATURE NEUROSCIENCE

and MNI (Supplementary Video 4) group spaces; movies that 
inspect raw and pre-processed EPI volumes (Supplementary  
Video 5); and movies that provide volume and surface visualizations 
of the stability of mean EPI intensity across sessions (Supplementary 
Videos 6 and 7 and Supplementary Fig. 4) and the stability of 
BOLD responses across sessions (Supplementary Videos 8 and 9). 
All movies are readily viewable online (https://osf.io/zyb3t/). The 
visualizations—in particular, Supplementary Video 9—indicate that 
the quality of the NSD data enable precision functional mapping33: 
activity patterns are fine-scale and highly reliable within individual 
participants, and these patterns are distinct across participants.

In addition to visual inspection, quantitative data quality metrics 
were computed for each NSD scan session. This was in fact done 
on a rolling basis as the data were acquired, allowing us to monitor 
data quality and provide performance bonuses to the participants. 
Inspecting the metrics, we see that temporal signal-to-noise ratio 
(tSNR) is stable across scan sessions for each participant (Fig. 2d, 
left). One participant, participant 8, exhibited low tSNR compared to 
the other participants; this can be attributed to higher levels of head 
motion for this participant (Fig. 2d, middle). We also observe that 
BOLD responses (quantified as median variance explained across 

voxels and runs by a simple ON–OFF general linear model (GLM)) 
are stable across scan sessions for each participant, although there 
is substantial variation in the strength of BOLD responses across 
participants (Fig. 2d, right).

One feature that we implemented in the pre-processing of the 
fMRI data was to interpolate the data on a fine temporal grid and 
a fine spatial grid in the same steps used to correct for slice timing 
differences and spatial displacements (for example, head motion). 
This upsampling strategy preserves fine-scale detail that is pres-
ent in the raw fMRI data due to the temporal jitter of the acquired 
fMRI volumes relative to the experimental paradigm and the spatial 
jitter of the acquired fMRI volumes relative to the anatomy of the 
brain32,34. An illustration of the benefits of upsampling is provided 
in Extended Data Fig. 5. This example highlights the existence of 
fine-scale detail in fMRI image intensities (Extended Data Fig. 5b, 
top row) as well as in BOLD responses extracted from the fMRI data 
(Extended Data Fig. 5b, bottom row, and Extended Data Fig. 5c). 
Notably, this fine-scale detail is replicable across different scan ses-
sions (Extended Data Fig. 5c, bottom, and Extended Data Fig. 5d), 
indicating that the upsampled preparation reveals meaningful detail 
that is lost under a non-upsampled approach.
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Fig. 1 | Design of the NSD experiment. a, Trial design. While maintaining central fixation, participants viewed sequences of color natural scenes and 
judged whether each image had been previously shown at any point in the past. The scenes, taken from Microsoft’s COCO14, are richly annotated with 
object information (as depicted). b, Run and session design. Each run lasted 5!min and consisted of 62 or 63 stimulus trials with occasional interspersed 
blank trials. Each scan session consisted of 12 runs (750 stimulus trials). c, Timeline of 7T fMRI scan sessions. Each individual participated in an  
initial screening session (prffloc), 30–40 NSD core sessions and two final sessions (nsdsynthetic and nsdimagery). The first NSD core session  
corresponds to day 0. d, Behavioral performance. For each of three trial types, we quantify the percentage of trials on which the participant indicated  
an ‘old’ response.
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lots of data per participantRESOURCENATURE NEUROSCIENCE

Extensive auxiliary measures to complement the NSD data. To 
enrich the fMRI data from the NSD experiment, we collected and 
prepared a large set of auxiliary measures. These measures include 
substantial amounts of resting-state data (minimum 100 min per 
participant), external physiological measures during the resting- 
state scan sessions, diffusion data and associated derivatives (white- 
matter tracts and structural connectivity matrices) and an extensive 
collection of manually defined regions of interest (ROIs), including  
retinotopic and category-selective areas as well as subregions of  
the thalamus and medial temporal lobe. Results and discussion of 
these resources can be found in Supplementary Note 1, Extended 
Data Figs. 6 and 7 and Supplementary Fig. 5.

Accurate estimation of single-trial fMRI response amplitudes. 
We performed a GLM analysis of the data from the NSD experiment  

to help streamline subsequent analyses of the data. The goal of the 
GLM was to obtain single-trial betas—that is, estimates of the fMRI 
response amplitude of each voxel to each trial conducted. Given the 
low SNR of fMRI and the overlap of the hemodynamic response from 
trial to trial, estimating accurate betas is a challenging endeavor. We 
thus developed a novel GLM approach consisting of three com-
ponents. First, we used a library of hemodynamic response func-
tions (HRFs) derived from an initial analysis of the dataset as an 
efficient and well-regularized method for estimating voxel-specific 
HRFs (Fig. 3a–c). Second, we adapted the GLMdenoise tech-
nique35 to the single-trial GLM framework, thereby enabling the 
use of data-driven nuisance regressors (Fig. 3d). Third, to address 
the challenge posed by highly correlated single-trial regressors, 
we developed an efficient implementation of ridge regression36 
and used this to regularize and improve the accuracy of the betas  
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Fig. 2 | Overview of acquired data. a, Auxiliary fMRI experiments. Data from the pRF and fLoc experiments were used to define retinotopic visual areas and 
category-selective regions, respectively. Resting-state data were collected before and after the NSD runs in a subset of the NSD core sessions (totaling 100 
or 180!min per participant). b, Available measures. Examples of the actual data are depicted. c, Participant selection. Data quality from the initial screening 
session was used to rank a set of 14 participants. On the right is an illustration of one measure contributing to the ranking—specifically, variance explained 
in the fLoc experiment (one slice per participant; identical color range). The inset compares the participant ranking against the b3 noise ceiling calculated 
on the full NSD dataset (Fig. 3). A line fit to the eight NSD participants (gold dots) is extrapolated to predict noise ceilings for the individuals who were not 
selected for participation in the NSD (red circles). d, Metrics of data quality (for details, see ‘Data quality metrics’ in the Methods). Results for individual 
participants (thin colored lines) and the median across participants (thick black line) are shown. The insets show detail on tSNR and head motion for one 
sample run (see Supplementary Figs. 1 and 2 for more information).
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Fig. 2 | Overview of acquired data. a, Auxiliary fMRI experiments. Data from the pRF and fLoc experiments were used to define retinotopic visual areas and 
category-selective regions, respectively. Resting-state data were collected before and after the NSD runs in a subset of the NSD core sessions (totaling 100 
or 180!min per participant). b, Available measures. Examples of the actual data are depicted. c, Participant selection. Data quality from the initial screening 
session was used to rank a set of 14 participants. On the right is an illustration of one measure contributing to the ranking—specifically, variance explained 
in the fLoc experiment (one slice per participant; identical color range). The inset compares the participant ranking against the b3 noise ceiling calculated 
on the full NSD dataset (Fig. 3). A line fit to the eight NSD participants (gold dots) is extrapolated to predict noise ceilings for the individuals who were not 
selected for participation in the NSD (red circles). d, Metrics of data quality (for details, see ‘Data quality metrics’ in the Methods). Results for individual 
participants (thin colored lines) and the median across participants (thick black line) are shown. The insets show detail on tSNR and head motion for one 
sample run (see Supplementary Figs. 1 and 2 for more information).

NATURE NEUROSCIENCE | VOL 25 | JANUARY 2022 | 116–126 | www.nature.com/natureneuroscience 119



lots of data per participantRESOURCENATURE NEUROSCIENCE

Extensive auxiliary measures to complement the NSD data. To 
enrich the fMRI data from the NSD experiment, we collected and 
prepared a large set of auxiliary measures. These measures include 
substantial amounts of resting-state data (minimum 100 min per 
participant), external physiological measures during the resting- 
state scan sessions, diffusion data and associated derivatives (white- 
matter tracts and structural connectivity matrices) and an extensive 
collection of manually defined regions of interest (ROIs), including  
retinotopic and category-selective areas as well as subregions of  
the thalamus and medial temporal lobe. Results and discussion of 
these resources can be found in Supplementary Note 1, Extended 
Data Figs. 6 and 7 and Supplementary Fig. 5.

Accurate estimation of single-trial fMRI response amplitudes. 
We performed a GLM analysis of the data from the NSD experiment  

to help streamline subsequent analyses of the data. The goal of the 
GLM was to obtain single-trial betas—that is, estimates of the fMRI 
response amplitude of each voxel to each trial conducted. Given the 
low SNR of fMRI and the overlap of the hemodynamic response from 
trial to trial, estimating accurate betas is a challenging endeavor. We 
thus developed a novel GLM approach consisting of three com-
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Fig. 2 | Overview of acquired data. a, Auxiliary fMRI experiments. Data from the pRF and fLoc experiments were used to define retinotopic visual areas and 
category-selective regions, respectively. Resting-state data were collected before and after the NSD runs in a subset of the NSD core sessions (totaling 100 
or 180!min per participant). b, Available measures. Examples of the actual data are depicted. c, Participant selection. Data quality from the initial screening 
session was used to rank a set of 14 participants. On the right is an illustration of one measure contributing to the ranking—specifically, variance explained 
in the fLoc experiment (one slice per participant; identical color range). The inset compares the participant ranking against the b3 noise ceiling calculated 
on the full NSD dataset (Fig. 3). A line fit to the eight NSD participants (gold dots) is extrapolated to predict noise ceilings for the individuals who were not 
selected for participation in the NSD (red circles). d, Metrics of data quality (for details, see ‘Data quality metrics’ in the Methods). Results for individual 
participants (thin colored lines) and the median across participants (thick black line) are shown. The insets show detail on tSNR and head motion for one 
sample run (see Supplementary Figs. 1 and 2 for more information).
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and MNI (Supplementary Video 4) group spaces; movies that 
inspect raw and pre-processed EPI volumes (Supplementary  
Video 5); and movies that provide volume and surface visualizations 
of the stability of mean EPI intensity across sessions (Supplementary 
Videos 6 and 7 and Supplementary Fig. 4) and the stability of 
BOLD responses across sessions (Supplementary Videos 8 and 9). 
All movies are readily viewable online (https://osf.io/zyb3t/). The 
visualizations—in particular, Supplementary Video 9—indicate that 
the quality of the NSD data enable precision functional mapping33: 
activity patterns are fine-scale and highly reliable within individual 
participants, and these patterns are distinct across participants.

In addition to visual inspection, quantitative data quality metrics 
were computed for each NSD scan session. This was in fact done 
on a rolling basis as the data were acquired, allowing us to monitor 
data quality and provide performance bonuses to the participants. 
Inspecting the metrics, we see that temporal signal-to-noise ratio 
(tSNR) is stable across scan sessions for each participant (Fig. 2d, 
left). One participant, participant 8, exhibited low tSNR compared to 
the other participants; this can be attributed to higher levels of head 
motion for this participant (Fig. 2d, middle). We also observe that 
BOLD responses (quantified as median variance explained across 

voxels and runs by a simple ON–OFF general linear model (GLM)) 
are stable across scan sessions for each participant, although there 
is substantial variation in the strength of BOLD responses across 
participants (Fig. 2d, right).

One feature that we implemented in the pre-processing of the 
fMRI data was to interpolate the data on a fine temporal grid and 
a fine spatial grid in the same steps used to correct for slice timing 
differences and spatial displacements (for example, head motion). 
This upsampling strategy preserves fine-scale detail that is pres-
ent in the raw fMRI data due to the temporal jitter of the acquired 
fMRI volumes relative to the experimental paradigm and the spatial 
jitter of the acquired fMRI volumes relative to the anatomy of the 
brain32,34. An illustration of the benefits of upsampling is provided 
in Extended Data Fig. 5. This example highlights the existence of 
fine-scale detail in fMRI image intensities (Extended Data Fig. 5b, 
top row) as well as in BOLD responses extracted from the fMRI data 
(Extended Data Fig. 5b, bottom row, and Extended Data Fig. 5c). 
Notably, this fine-scale detail is replicable across different scan ses-
sions (Extended Data Fig. 5c, bottom, and Extended Data Fig. 5d), 
indicating that the upsampled preparation reveals meaningful detail 
that is lost under a non-upsampled approach.
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Fig. 1 | Design of the NSD experiment. a, Trial design. While maintaining central fixation, participants viewed sequences of color natural scenes and 
judged whether each image had been previously shown at any point in the past. The scenes, taken from Microsoft’s COCO14, are richly annotated with 
object information (as depicted). b, Run and session design. Each run lasted 5!min and consisted of 62 or 63 stimulus trials with occasional interspersed 
blank trials. Each scan session consisted of 12 runs (750 stimulus trials). c, Timeline of 7T fMRI scan sessions. Each individual participated in an  
initial screening session (prffloc), 30–40 NSD core sessions and two final sessions (nsdsynthetic and nsdimagery). The first NSD core session  
corresponds to day 0. d, Behavioral performance. For each of three trial types, we quantify the percentage of trials on which the participant indicated  
an ‘old’ response.
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what was the brain 
response to this 
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How to solve for p?
y = Xp
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solution, because we 

have more equations than 
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popt = X#y
... where popt are the 

(best) parameter 
estimates and # means 

pseudoinverse.
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... where y, p  are vectors 
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[•]-1 is the matrix inverse.
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XTy = XTXp

(XTX)�1XT y = popt
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Multiple parameters

... where y, p  are vectors 
and X is the known matrix. 
and [•]T is transpose and 
[•]-1 is the matrix inverse.

y = Xp
XTy = XTXp

(XTX)�1XT y = popt

projection matrix

>> p = pinv(X)*y

>> p = X \ y

pseudoinverse (X)

☣

in matlab, this 
uses SVD under 

the hood…

should give 
same answer, but 

uses different 
method (QR)
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don’t assume: find the best1

re-run model on 
data with one of 20 

choices…  

pick the one that 
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try to remove noise (PCA)

• treat all events as one (ON)… this leads to an ON-
OFF design


• find voxels that have a low r2 … this becomes a noise 
pool


• use PCA on the noise pool voxels to find common 
noise “time courses” (and include them in your model 
as nuisance regressors)

2

r2

noise pool
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how many / 
which components 

to include? 

cross-validation
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deal with correlated 
regressors

(XTX)�1

• Make sure the design matrix makes sense! 
• Is XTX always invertible? If not, why not? 
• What is the interpretation for the values 

corresponding to each element of popt? Is the 
meaning of each value independent of the other 
elements?
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what’s the problem?

• when two regressors can explain similar 
parts of the data, then the problem is ill-
posed


• noise can make estimates jump around a lot


• solution: regularise the weights 
 
(this means picking a set that fulfils certain 
constraints - punish large beta weights



what’s the problem?

• when two regressors can explain similar 
parts of the data, then the problem is ill-
posed


• noise can make estimates jump around a lot


• solution: regularise the weights 
 
(this means picking a set that fulfils certain 
constraints - punish large beta weights

ridge regression: 
L2 norm



reliability goes up
 Tools and resources      Neuroscience

Prince et al. eLife 2022;11:e77599. DOI: https://doi.org/10.7554/eLife.77599  6 of 28

reliability, we repeated the reliability quantification for each of the 8 beta versions, this time computing 
test- retest correlation values using only beta responses obtained from completely separate data parti-
tions. We find that results are broadly unchanged using this more stringent evaluation procedure 
(Figure 3b).

As a further test of the general applicability of GLMsingle, we repeated the above procedures 
using data from the music- listening component of StudyForrest (Hanke et al., 2015). This dataset 
measures brain responses as subjects listen to 25 distinct 6- s musical clips from 5 genres, with 8 
trials per condition for each of 16 subjects. Each condition occurred once per functional run, and 
each subject completed one session of data consisting of 8 runs. This dataset differs from NSD and 
BOLD5000 in several key respects: the scale (there are far fewer trials), the task modality (auditory, 
as opposed to visual), and the use of a jittered inter- stimulus interval (the delay between trials is 
variable between 4 and 8  s). As in NSD and BOLD5000, we observe substantial improvements in 

Figure 3. Relative quality of GLMsingle and LSS beta versions. (A) Left panel: relative differences in mean reliability between beta versions. 8 beta 
versions are compared:  b1 - b� , and the 4 auxiliary beta versions used to compare GLMsingle and Least- Squares Separate (LSS). LSS betas (dashed 
traces) are compared to those estimated using fractional ridge regression (RR, solid traces), when using a canonical HRF (LSS, light gray vs. RR, dark 
gray) and when performing HRF optimization (LSS, light purple vs. RR, dark purple). Right panel: summary of performance at threshold level  S �  0.2. 
Error bars reflect the standard error of the mean, computed over the 8 subjects analyzed from NSD and BOLD5000. Fractional ridge regression yields 
more reliable signal estimates than LSS across voxel reliability levels. (B) Same as Panel (A), except that reliability computations occur only between 
image repetitions processed in independent partitions of fMRI data. Qualitative patterns are unchanged. (C) Scatter plots comparing voxel reliability 
between corresponding LSS and GLMsingle beta versions (top: AssumeHRF; bottom: FitHRF). Plotted are results for an example subject (NSD subj01, 
nsdgeneral ROI). The advantage of ridge regression over LSS is most apparent in the most reliable voxels.



Discussion points

• do people analyse their timeseries data in similar ways 
(eye tracking? physiological data? EEG / event-related..)


• ONOFF idea - for a noise pool / data driven data cleaning?


• regularisation? ridge regression / LASSO, etc.


