%>% gt() table1
country | year | cases | population |
---|---|---|---|
Afghanistan | 1999 | 745 | 19987071 |
Afghanistan | 2000 | 2666 | 20595360 |
Brazil | 1999 | 37737 | 172006362 |
Brazil | 2000 | 80488 | 174504898 |
China | 1999 | 212258 | 1272915272 |
China | 2000 | 213766 | 1280428583 |
Denis Schluppeck
2023-02-22
a lot of data we work with is tabular
can be represented in a table with rows and columns
maybe particular important for reporting data from repeated trials, experiments, conditions (neuroscience)
links to statistical reports and visualisations we often want/need
You probably have your own, but eg:
“Happy families are all alike; every unhappy family is unhappy in its own way.” — Leo Tolstoy
“Tidy datasets are all alike, but every messy dataset is messy in its own way.” — Hadley Wickham
number of TB cases in country, population
country | year | type | count |
---|---|---|---|
Afghanistan | 1999 | cases | 745 |
Afghanistan | 1999 | population | 19987071 |
Afghanistan | 2000 | cases | 2666 |
Afghanistan | 2000 | population | 20595360 |
Brazil | 1999 | cases | 37737 |
Brazil | 1999 | population | 172006362 |
Brazil | 2000 | cases | 80488 |
Brazil | 2000 | population | 174504898 |
China | 1999 | cases | 212258 |
China | 1999 | population | 1272915272 |
China | 2000 | cases | 213766 |
China | 2000 | population | 1280428583 |
Wickham and Grolemund (2023)
this layout leads to a series of elegant ways to manipulate table
it’s a standard (so tool builders can make code to work with it)
it plays nicely with storage (files) and visualisation (grammar of graphics ideas)
Some ideas that crop up in
sql
dplyr
(a popular library in r
),pandas
(in python
)QueryVerse.jl
(in julia
)tables
in matlab
A really good summary on this cheatsheet – using r
syntax, but good for ideas!
join()
)filter()
select()
groupby(), summarize()
direction | p_cw | se | coherence | subject |
---|---|---|---|---|
-19.5 | 0.114 | 0.023 | 0.04 | A |
-15.5 | 0.173 | 0.030 | 0.04 | A |
-11.5 | 0.236 | 0.032 | 0.04 | A |
-7.5 | 0.276 | 0.033 | 0.04 | A |
-3.5 | 0.390 | 0.036 | 0.04 | A |
0.5 | 0.430 | 0.037 | 0.04 | A |
4.5 | 0.516 | 0.037 | 0.04 | A |
8.5 | 0.599 | 0.035 | 0.04 | A |
12.5 | 0.719 | 0.033 | 0.04 | A |
16.5 | 0.748 | 0.031 | 0.04 | A |
20.5 | 0.780 | 0.031 | 0.04 | A |
-19.5 | 0.048 | 0.016 | 0.07 | A |
-15.5 | 0.089 | 0.021 | 0.07 | A |
-11.5 | 0.106 | 0.023 | 0.07 | A |
-7.5 | 0.152 | 0.026 | 0.07 | A |
-3.5 | 0.304 | 0.034 | 0.07 | A |
0.5 | 0.397 | 0.036 | 0.07 | A |
4.5 | 0.592 | 0.034 | 0.07 | A |
8.5 | 0.695 | 0.033 | 0.07 | A |
12.5 | 0.823 | 0.029 | 0.07 | A |
16.5 | 0.831 | 0.029 | 0.07 | A |
20.5 | 0.923 | 0.021 | 0.07 | A |
-19.5 | 0.010 | 0.007 | 0.13 | A |
-15.5 | 0.049 | 0.015 | 0.13 | A |
-11.5 | 0.098 | 0.022 | 0.13 | A |
-7.5 | 0.121 | 0.024 | 0.13 | A |
-3.5 | 0.218 | 0.030 | 0.13 | A |
0.5 | 0.424 | 0.038 | 0.13 | A |
4.5 | 0.611 | 0.038 | 0.13 | A |
8.5 | 0.715 | 0.035 | 0.13 | A |
12.5 | 0.820 | 0.028 | 0.13 | A |
16.5 | 0.924 | 0.020 | 0.13 | A |
20.5 | 0.950 | 0.015 | 0.13 | A |
-19.5 | 0.005 | 0.005 | 0.25 | A |
-15.5 | 0.022 | 0.010 | 0.25 | A |
-11.5 | 0.047 | 0.015 | 0.25 | A |
-7.5 | 0.073 | 0.020 | 0.25 | A |
-3.5 | 0.140 | 0.026 | 0.25 | A |
0.5 | 0.375 | 0.034 | 0.25 | A |
4.5 | 0.593 | 0.037 | 0.25 | A |
8.5 | 0.825 | 0.029 | 0.25 | A |
12.5 | 0.904 | 0.021 | 0.25 | A |
16.5 | 0.945 | 0.017 | 0.25 | A |
20.5 | 0.972 | 0.012 | 0.25 | A |
-19.5 | 0.290 | 0.036 | 0.04 | C |
-15.5 | 0.345 | 0.037 | 0.04 | C |
-11.5 | 0.371 | 0.039 | 0.04 | C |
-7.5 | 0.393 | 0.040 | 0.04 | C |
-3.5 | 0.400 | 0.039 | 0.04 | C |
0.5 | 0.523 | 0.040 | 0.04 | C |
4.5 | 0.594 | 0.039 | 0.04 | C |
8.5 | 0.633 | 0.041 | 0.04 | C |
12.5 | 0.675 | 0.040 | 0.04 | C |
16.5 | 0.683 | 0.039 | 0.04 | C |
20.5 | 0.744 | 0.038 | 0.04 | C |
-19.5 | 0.172 | 0.032 | 0.07 | C |
-15.5 | 0.203 | 0.031 | 0.07 | C |
-11.5 | 0.236 | 0.035 | 0.07 | C |
-7.5 | 0.373 | 0.040 | 0.07 | C |
-3.5 | 0.417 | 0.041 | 0.07 | C |
0.5 | 0.493 | 0.041 | 0.07 | C |
4.5 | 0.595 | 0.042 | 0.07 | C |
8.5 | 0.725 | 0.036 | 0.07 | C |
12.5 | 0.740 | 0.035 | 0.07 | C |
16.5 | 0.800 | 0.035 | 0.07 | C |
20.5 | 0.804 | 0.032 | 0.07 | C |
-19.5 | 0.092 | 0.025 | 0.13 | C |
-15.5 | 0.131 | 0.030 | 0.13 | C |
-11.5 | 0.234 | 0.035 | 0.13 | C |
-7.5 | 0.333 | 0.040 | 0.13 | C |
-3.5 | 0.385 | 0.043 | 0.13 | C |
0.5 | 0.531 | 0.042 | 0.13 | C |
4.5 | 0.672 | 0.039 | 0.13 | C |
8.5 | 0.745 | 0.036 | 0.13 | C |
12.5 | 0.796 | 0.034 | 0.13 | C |
16.5 | 0.777 | 0.032 | 0.13 | C |
20.5 | 0.908 | 0.023 | 0.13 | C |
-19.5 | 0.051 | 0.018 | 0.25 | C |
-15.5 | 0.082 | 0.024 | 0.25 | C |
-11.5 | 0.150 | 0.030 | 0.25 | C |
-7.5 | 0.261 | 0.035 | 0.25 | C |
-3.5 | 0.364 | 0.039 | 0.25 | C |
0.5 | 0.383 | 0.041 | 0.25 | C |
4.5 | 0.623 | 0.040 | 0.25 | C |
8.5 | 0.739 | 0.035 | 0.25 | C |
12.5 | 0.762 | 0.035 | 0.25 | C |
16.5 | 0.800 | 0.033 | 0.25 | C |
20.5 | 0.924 | 0.021 | 0.25 | C |
-19.5 | 0.174 | 0.035 | 0.04 | D |
-15.5 | 0.231 | 0.038 | 0.04 | D |
-11.5 | 0.222 | 0.036 | 0.04 | D |
-7.5 | 0.284 | 0.040 | 0.04 | D |
-3.5 | 0.375 | 0.043 | 0.04 | D |
0.5 | 0.485 | 0.044 | 0.04 | D |
4.5 | 0.605 | 0.042 | 0.04 | D |
8.5 | 0.762 | 0.040 | 0.04 | D |
12.5 | 0.858 | 0.031 | 0.04 | D |
16.5 | 0.879 | 0.029 | 0.04 | D |
20.5 | 0.897 | 0.028 | 0.04 | D |
-19.5 | 0.064 | 0.022 | 0.07 | D |
-15.5 | 0.070 | 0.023 | 0.07 | D |
-11.5 | 0.138 | 0.030 | 0.07 | D |
-7.5 | 0.278 | 0.040 | 0.07 | D |
-3.5 | 0.360 | 0.044 | 0.07 | D |
0.5 | 0.504 | 0.045 | 0.07 | D |
4.5 | 0.639 | 0.043 | 0.07 | D |
8.5 | 0.776 | 0.036 | 0.07 | D |
12.5 | 0.832 | 0.033 | 0.07 | D |
16.5 | 0.944 | 0.021 | 0.07 | D |
20.5 | 0.959 | 0.018 | 0.07 | D |
-19.5 | 0.017 | 0.011 | 0.13 | D |
-15.5 | 0.065 | 0.022 | 0.13 | D |
-11.5 | 0.108 | 0.029 | 0.13 | D |
-7.5 | 0.252 | 0.039 | 0.13 | D |
-3.5 | 0.327 | 0.045 | 0.13 | D |
0.5 | 0.450 | 0.044 | 0.13 | D |
4.5 | 0.696 | 0.044 | 0.13 | D |
8.5 | 0.855 | 0.031 | 0.13 | D |
12.5 | 0.933 | 0.021 | 0.13 | D |
16.5 | 0.969 | 0.016 | 0.13 | D |
20.5 | 0.992 | 0.008 | 0.13 | D |
-19.5 | 0.015 | 0.010 | 0.25 | D |
-15.5 | 0.030 | 0.016 | 0.25 | D |
-11.5 | 0.067 | 0.023 | 0.25 | D |
-7.5 | 0.105 | 0.028 | 0.25 | D |
-3.5 | 0.271 | 0.038 | 0.25 | D |
0.5 | 0.440 | 0.046 | 0.25 | D |
4.5 | 0.818 | 0.034 | 0.25 | D |
8.5 | 0.868 | 0.031 | 0.25 | D |
12.5 | 0.940 | 0.023 | 0.25 | D |
16.5 | 1.000 | 0.000 | 0.25 | D |
20.5 | 1.000 | 0.000 | 0.25 | D |
-19.5 | 0.169 | 0.030 | 0.04 | E |
-15.5 | 0.136 | 0.027 | 0.04 | E |
-11.5 | 0.214 | 0.033 | 0.04 | E |
-7.5 | 0.290 | 0.039 | 0.04 | E |
-3.5 | 0.413 | 0.044 | 0.04 | E |
0.5 | 0.474 | 0.043 | 0.04 | E |
4.5 | 0.586 | 0.044 | 0.04 | E |
8.5 | 0.681 | 0.039 | 0.04 | E |
12.5 | 0.682 | 0.037 | 0.04 | E |
16.5 | 0.791 | 0.036 | 0.04 | E |
20.5 | 0.831 | 0.033 | 0.04 | E |
-19.5 | 0.101 | 0.026 | 0.07 | E |
-15.5 | 0.103 | 0.026 | 0.07 | E |
-11.5 | 0.129 | 0.030 | 0.07 | E |
-7.5 | 0.222 | 0.035 | 0.07 | E |
-3.5 | 0.307 | 0.040 | 0.07 | E |
0.5 | 0.469 | 0.042 | 0.07 | E |
4.5 | 0.634 | 0.038 | 0.07 | E |
8.5 | 0.755 | 0.034 | 0.07 | E |
12.5 | 0.748 | 0.038 | 0.07 | E |
16.5 | 0.865 | 0.028 | 0.07 | E |
20.5 | 0.910 | 0.023 | 0.07 | E |
-19.5 | 0.039 | 0.016 | 0.13 | E |
-15.5 | 0.036 | 0.016 | 0.13 | E |
-11.5 | 0.066 | 0.021 | 0.13 | E |
-7.5 | 0.131 | 0.029 | 0.13 | E |
-3.5 | 0.287 | 0.037 | 0.13 | E |
0.5 | 0.477 | 0.040 | 0.13 | E |
4.5 | 0.642 | 0.042 | 0.13 | E |
8.5 | 0.843 | 0.032 | 0.13 | E |
12.5 | 0.936 | 0.021 | 0.13 | E |
16.5 | 0.953 | 0.018 | 0.13 | E |
20.5 | 0.978 | 0.012 | 0.13 | E |
-19.5 | 0.000 | 0.000 | 0.25 | E |
-15.5 | 0.020 | 0.011 | 0.25 | E |
-11.5 | 0.035 | 0.015 | 0.25 | E |
-7.5 | 0.066 | 0.020 | 0.25 | E |
-3.5 | 0.217 | 0.033 | 0.25 | E |
0.5 | 0.407 | 0.042 | 0.25 | E |
4.5 | 0.752 | 0.035 | 0.25 | E |
8.5 | 0.888 | 0.027 | 0.25 | E |
12.5 | 0.946 | 0.019 | 0.25 | E |
16.5 | 0.974 | 0.013 | 0.25 | E |
20.5 | 1.000 | 0.000 | 0.25 | E |
-19.5 | 0.446 | 0.043 | 0.04 | F |
-15.5 | 0.486 | 0.044 | 0.04 | F |
-11.5 | 0.577 | 0.042 | 0.04 | F |
-7.5 | 0.532 | 0.047 | 0.04 | F |
-3.5 | 0.559 | 0.045 | 0.04 | F |
0.5 | 0.593 | 0.045 | 0.04 | F |
4.5 | 0.595 | 0.041 | 0.04 | F |
8.5 | 0.565 | 0.045 | 0.04 | F |
12.5 | 0.612 | 0.041 | 0.04 | F |
16.5 | 0.615 | 0.042 | 0.04 | F |
20.5 | 0.684 | 0.038 | 0.04 | F |
-19.5 | 0.378 | 0.041 | 0.07 | F |
-15.5 | 0.518 | 0.042 | 0.07 | F |
-11.5 | 0.397 | 0.040 | 0.07 | F |
-7.5 | 0.470 | 0.044 | 0.07 | F |
-3.5 | 0.500 | 0.043 | 0.07 | F |
0.5 | 0.528 | 0.045 | 0.07 | F |
4.5 | 0.597 | 0.044 | 0.07 | F |
8.5 | 0.664 | 0.039 | 0.07 | F |
12.5 | 0.707 | 0.038 | 0.07 | F |
16.5 | 0.621 | 0.041 | 0.07 | F |
20.5 | 0.678 | 0.043 | 0.07 | F |
-19.5 | 0.272 | 0.039 | 0.13 | F |
-15.5 | 0.276 | 0.038 | 0.13 | F |
-11.5 | 0.375 | 0.042 | 0.13 | F |
-7.5 | 0.489 | 0.041 | 0.13 | F |
-3.5 | 0.446 | 0.043 | 0.13 | F |
0.5 | 0.577 | 0.042 | 0.13 | F |
4.5 | 0.602 | 0.043 | 0.13 | F |
8.5 | 0.611 | 0.042 | 0.13 | F |
12.5 | 0.727 | 0.040 | 0.13 | F |
16.5 | 0.746 | 0.039 | 0.13 | F |
20.5 | 0.805 | 0.034 | 0.13 | F |
-19.5 | 0.178 | 0.033 | 0.25 | F |
-15.5 | 0.203 | 0.036 | 0.25 | F |
-11.5 | 0.276 | 0.041 | 0.25 | F |
-7.5 | 0.281 | 0.037 | 0.25 | F |
-3.5 | 0.457 | 0.041 | 0.25 | F |
0.5 | 0.543 | 0.039 | 0.25 | F |
4.5 | 0.626 | 0.041 | 0.25 | F |
8.5 | 0.738 | 0.039 | 0.25 | F |
12.5 | 0.779 | 0.038 | 0.25 | F |
16.5 | 0.857 | 0.030 | 0.25 | F |
20.5 | 0.852 | 0.031 | 0.25 | F |
group_by
and summarize
ggplot
) versusmatlab
, matplotlib
, …)11 what I used to use before I hit on / read the tidyverse
stuff.
5,6 lines of code to get this
csv
, parquet
, feather
??)