Tidy data

Author

Denis Schluppeck

Session date:

2023-02-22

Introduction

  • a lot of data we work with is tabular

  • can be represented in a table with rows and columns

  • maybe particular important for reporting data from repeated trials, experiments, conditions (neuroscience)

  • links to statistical reports and visualisations we often want/need

Examples:

You probably have your own, but eg:

  • rating in a questionnaire [per item, participant]
  • reaction times [per trial, subject, condition]
  • % fMRI signal change [per brain region across, subject, conditions]
  • spike rate [per neuron, animal, task]

Just put them in a table, right!?

The files are in the computer?

Anna Karenina principle

“Happy families are all alike; every unhappy family is unhappy in its own way.” — Leo Tolstoy

“Tidy datasets are all alike, but every messy dataset is messy in its own way.” — Hadley Wickham

Example table A

number of TB cases in country, population

table1 %>% gt()
country year cases population
Afghanistan 1999 745 19987071
Afghanistan 2000 2666 20595360
Brazil 1999 37737 172006362
Brazil 2000 80488 174504898
China 1999 212258 1272915272
China 2000 213766 1280428583

Example table B

table2 %>% gt()
country year type count
Afghanistan 1999 cases 745
Afghanistan 1999 population 19987071
Afghanistan 2000 cases 2666
Afghanistan 2000 population 20595360
Brazil 1999 cases 37737
Brazil 1999 population 172006362
Brazil 2000 cases 80488
Brazil 2000 population 174504898
China 1999 cases 212258
China 1999 population 1272915272
China 2000 cases 213766
China 2000 population 1280428583

Example table C

table3 %>% gt()
country year rate
Afghanistan 1999 745/19987071
Afghanistan 2000 2666/20595360
Brazil 1999 37737/172006362
Brazil 2000 80488/174504898
China 1999 212258/1272915272
China 2000 213766/1280428583

“Tidy” means

Wickham and Grolemund (2023)

Wickham, H, and G Grolemund. 2023. “R for Data Science (2e).” 2023. https://r4ds.hadley.nz/.

Graphic showing tabular data

Tidy data illustration from R4DS
  • each column represents a variable
  • each row an observation
  • each cell entry a value (number, text, …)

Benefits

  • this layout leads to a series of elegant ways to manipulate table

  • it’s a standard (so tool builders can make code to work with it)

  • it plays nicely with storage (files) and visualisation (grammar of graphics ideas)

Manipulating tables: concepts

Some ideas that crop up in

  • sql
  • dplyr (a popular library in r),
  • pandas (in python)
  • QueryVerse.jl (in julia)
  • tables in matlab

Main ideas

A really good summary on this cheatsheet – using r syntax, but good for ideas!

  • subsetting (rows, columns)
  • mutating (calculating new values)
  • aggregating (grouping, summarising)
  • combining (including relational data, join())

taking rows, filter()

 

taking columns, select()

 

aggregate, groupby(), summarize()

 

By example (Psychophysics data)

As a table

d |> gt()
direction p_cw se coherence subject
-19.5 0.114 0.023 0.04 A
-15.5 0.173 0.030 0.04 A
-11.5 0.236 0.032 0.04 A
-7.5 0.276 0.033 0.04 A
-3.5 0.390 0.036 0.04 A
0.5 0.430 0.037 0.04 A
4.5 0.516 0.037 0.04 A
8.5 0.599 0.035 0.04 A
12.5 0.719 0.033 0.04 A
16.5 0.748 0.031 0.04 A
20.5 0.780 0.031 0.04 A
-19.5 0.048 0.016 0.07 A
-15.5 0.089 0.021 0.07 A
-11.5 0.106 0.023 0.07 A
-7.5 0.152 0.026 0.07 A
-3.5 0.304 0.034 0.07 A
0.5 0.397 0.036 0.07 A
4.5 0.592 0.034 0.07 A
8.5 0.695 0.033 0.07 A
12.5 0.823 0.029 0.07 A
16.5 0.831 0.029 0.07 A
20.5 0.923 0.021 0.07 A
-19.5 0.010 0.007 0.13 A
-15.5 0.049 0.015 0.13 A
-11.5 0.098 0.022 0.13 A
-7.5 0.121 0.024 0.13 A
-3.5 0.218 0.030 0.13 A
0.5 0.424 0.038 0.13 A
4.5 0.611 0.038 0.13 A
8.5 0.715 0.035 0.13 A
12.5 0.820 0.028 0.13 A
16.5 0.924 0.020 0.13 A
20.5 0.950 0.015 0.13 A
-19.5 0.005 0.005 0.25 A
-15.5 0.022 0.010 0.25 A
-11.5 0.047 0.015 0.25 A
-7.5 0.073 0.020 0.25 A
-3.5 0.140 0.026 0.25 A
0.5 0.375 0.034 0.25 A
4.5 0.593 0.037 0.25 A
8.5 0.825 0.029 0.25 A
12.5 0.904 0.021 0.25 A
16.5 0.945 0.017 0.25 A
20.5 0.972 0.012 0.25 A
-19.5 0.290 0.036 0.04 C
-15.5 0.345 0.037 0.04 C
-11.5 0.371 0.039 0.04 C
-7.5 0.393 0.040 0.04 C
-3.5 0.400 0.039 0.04 C
0.5 0.523 0.040 0.04 C
4.5 0.594 0.039 0.04 C
8.5 0.633 0.041 0.04 C
12.5 0.675 0.040 0.04 C
16.5 0.683 0.039 0.04 C
20.5 0.744 0.038 0.04 C
-19.5 0.172 0.032 0.07 C
-15.5 0.203 0.031 0.07 C
-11.5 0.236 0.035 0.07 C
-7.5 0.373 0.040 0.07 C
-3.5 0.417 0.041 0.07 C
0.5 0.493 0.041 0.07 C
4.5 0.595 0.042 0.07 C
8.5 0.725 0.036 0.07 C
12.5 0.740 0.035 0.07 C
16.5 0.800 0.035 0.07 C
20.5 0.804 0.032 0.07 C
-19.5 0.092 0.025 0.13 C
-15.5 0.131 0.030 0.13 C
-11.5 0.234 0.035 0.13 C
-7.5 0.333 0.040 0.13 C
-3.5 0.385 0.043 0.13 C
0.5 0.531 0.042 0.13 C
4.5 0.672 0.039 0.13 C
8.5 0.745 0.036 0.13 C
12.5 0.796 0.034 0.13 C
16.5 0.777 0.032 0.13 C
20.5 0.908 0.023 0.13 C
-19.5 0.051 0.018 0.25 C
-15.5 0.082 0.024 0.25 C
-11.5 0.150 0.030 0.25 C
-7.5 0.261 0.035 0.25 C
-3.5 0.364 0.039 0.25 C
0.5 0.383 0.041 0.25 C
4.5 0.623 0.040 0.25 C
8.5 0.739 0.035 0.25 C
12.5 0.762 0.035 0.25 C
16.5 0.800 0.033 0.25 C
20.5 0.924 0.021 0.25 C
-19.5 0.174 0.035 0.04 D
-15.5 0.231 0.038 0.04 D
-11.5 0.222 0.036 0.04 D
-7.5 0.284 0.040 0.04 D
-3.5 0.375 0.043 0.04 D
0.5 0.485 0.044 0.04 D
4.5 0.605 0.042 0.04 D
8.5 0.762 0.040 0.04 D
12.5 0.858 0.031 0.04 D
16.5 0.879 0.029 0.04 D
20.5 0.897 0.028 0.04 D
-19.5 0.064 0.022 0.07 D
-15.5 0.070 0.023 0.07 D
-11.5 0.138 0.030 0.07 D
-7.5 0.278 0.040 0.07 D
-3.5 0.360 0.044 0.07 D
0.5 0.504 0.045 0.07 D
4.5 0.639 0.043 0.07 D
8.5 0.776 0.036 0.07 D
12.5 0.832 0.033 0.07 D
16.5 0.944 0.021 0.07 D
20.5 0.959 0.018 0.07 D
-19.5 0.017 0.011 0.13 D
-15.5 0.065 0.022 0.13 D
-11.5 0.108 0.029 0.13 D
-7.5 0.252 0.039 0.13 D
-3.5 0.327 0.045 0.13 D
0.5 0.450 0.044 0.13 D
4.5 0.696 0.044 0.13 D
8.5 0.855 0.031 0.13 D
12.5 0.933 0.021 0.13 D
16.5 0.969 0.016 0.13 D
20.5 0.992 0.008 0.13 D
-19.5 0.015 0.010 0.25 D
-15.5 0.030 0.016 0.25 D
-11.5 0.067 0.023 0.25 D
-7.5 0.105 0.028 0.25 D
-3.5 0.271 0.038 0.25 D
0.5 0.440 0.046 0.25 D
4.5 0.818 0.034 0.25 D
8.5 0.868 0.031 0.25 D
12.5 0.940 0.023 0.25 D
16.5 1.000 0.000 0.25 D
20.5 1.000 0.000 0.25 D
-19.5 0.169 0.030 0.04 E
-15.5 0.136 0.027 0.04 E
-11.5 0.214 0.033 0.04 E
-7.5 0.290 0.039 0.04 E
-3.5 0.413 0.044 0.04 E
0.5 0.474 0.043 0.04 E
4.5 0.586 0.044 0.04 E
8.5 0.681 0.039 0.04 E
12.5 0.682 0.037 0.04 E
16.5 0.791 0.036 0.04 E
20.5 0.831 0.033 0.04 E
-19.5 0.101 0.026 0.07 E
-15.5 0.103 0.026 0.07 E
-11.5 0.129 0.030 0.07 E
-7.5 0.222 0.035 0.07 E
-3.5 0.307 0.040 0.07 E
0.5 0.469 0.042 0.07 E
4.5 0.634 0.038 0.07 E
8.5 0.755 0.034 0.07 E
12.5 0.748 0.038 0.07 E
16.5 0.865 0.028 0.07 E
20.5 0.910 0.023 0.07 E
-19.5 0.039 0.016 0.13 E
-15.5 0.036 0.016 0.13 E
-11.5 0.066 0.021 0.13 E
-7.5 0.131 0.029 0.13 E
-3.5 0.287 0.037 0.13 E
0.5 0.477 0.040 0.13 E
4.5 0.642 0.042 0.13 E
8.5 0.843 0.032 0.13 E
12.5 0.936 0.021 0.13 E
16.5 0.953 0.018 0.13 E
20.5 0.978 0.012 0.13 E
-19.5 0.000 0.000 0.25 E
-15.5 0.020 0.011 0.25 E
-11.5 0.035 0.015 0.25 E
-7.5 0.066 0.020 0.25 E
-3.5 0.217 0.033 0.25 E
0.5 0.407 0.042 0.25 E
4.5 0.752 0.035 0.25 E
8.5 0.888 0.027 0.25 E
12.5 0.946 0.019 0.25 E
16.5 0.974 0.013 0.25 E
20.5 1.000 0.000 0.25 E
-19.5 0.446 0.043 0.04 F
-15.5 0.486 0.044 0.04 F
-11.5 0.577 0.042 0.04 F
-7.5 0.532 0.047 0.04 F
-3.5 0.559 0.045 0.04 F
0.5 0.593 0.045 0.04 F
4.5 0.595 0.041 0.04 F
8.5 0.565 0.045 0.04 F
12.5 0.612 0.041 0.04 F
16.5 0.615 0.042 0.04 F
20.5 0.684 0.038 0.04 F
-19.5 0.378 0.041 0.07 F
-15.5 0.518 0.042 0.07 F
-11.5 0.397 0.040 0.07 F
-7.5 0.470 0.044 0.07 F
-3.5 0.500 0.043 0.07 F
0.5 0.528 0.045 0.07 F
4.5 0.597 0.044 0.07 F
8.5 0.664 0.039 0.07 F
12.5 0.707 0.038 0.07 F
16.5 0.621 0.041 0.07 F
20.5 0.678 0.043 0.07 F
-19.5 0.272 0.039 0.13 F
-15.5 0.276 0.038 0.13 F
-11.5 0.375 0.042 0.13 F
-7.5 0.489 0.041 0.13 F
-3.5 0.446 0.043 0.13 F
0.5 0.577 0.042 0.13 F
4.5 0.602 0.043 0.13 F
8.5 0.611 0.042 0.13 F
12.5 0.727 0.040 0.13 F
16.5 0.746 0.039 0.13 F
20.5 0.805 0.034 0.13 F
-19.5 0.178 0.033 0.25 F
-15.5 0.203 0.036 0.25 F
-11.5 0.276 0.041 0.25 F
-7.5 0.281 0.037 0.25 F
-3.5 0.457 0.041 0.25 F
0.5 0.543 0.039 0.25 F
4.5 0.626 0.041 0.25 F
8.5 0.738 0.039 0.25 F
12.5 0.779 0.038 0.25 F
16.5 0.857 0.030 0.25 F
20.5 0.852 0.031 0.25 F

group_by and summarize

  • pick one coherence level
  • group by direction
  • summarise across all observers
```{r}
d |> filter(coherence == 0.25) |> 
     group_by(direction) |> 
     summarise(mean_p_cw = mean(p_cw)) |>
     gt()
```

result

Code
d |> filter(coherence == 0.25) |> 
     group_by(direction) |> 
     summarise(mean_p_cw = mean(p_cw)) |>
     gt()
direction mean_p_cw
-19.5 0.0498
-15.5 0.0714
-11.5 0.1150
-7.5 0.1572
-3.5 0.2898
0.5 0.4296
4.5 0.6824
8.5 0.8116
12.5 0.8662
16.5 0.9152
20.5 0.9496

plotting can follow same ideas

  • declarative style (ggplot) versus
  • imperative style (matlab, matplotlib, …)1

1 what I used to use before I hit on / read the tidyverse stuff.

plot example

5,6 lines of code to get this

Code
d |> filter(coherence == 0.25) |>
     ggplot(aes(x = direction, y = p_cw)) +
      geom_jitter() +
      geom_smooth() +
      theme_minimal()

one additional line…

```{r}
      ...
      facet_wrap(~subject) +
      ...
```
Code
d |> filter(coherence == 0.25) |>
     ggplot(aes(x = direction, y = p_cw)) +
      geom_jitter() +
      geom_smooth() +
      facet_wrap(~subject) +
      theme_minimal()

Discussion

  • data files (csv, parquet, feather ??)
  • what do people do (hand-wrap their own? other libraries)
  • how uses an actual database?
  • should we teach this at UG/PG level more??

References